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Abstract

Amino acid and nucleotide sequences constitute a rich source of information that can be used to
address a wide range of biological questions. The enormous amount of biological data that are
rapidly accumulating from sequencing efforts, on the one hand, and from other types of
experiments (e.g. three dimensional structure determination) on the other hand, are creating new
opportunities to correlate protein sequences with their structure and function. Nevertheless,
while the number of sequenced genomes continues to grow exponentially, other types of
experiments have not kept pace. For instance, despite the great progress in experimental
determination of protein three-dimensional structures, we know many more protein sequences
than protein three-dimensional structures, and the gap is getting bigger. Thus, many
bioinformatics applications which predict the properties of proteins or genes based on sequence
data alone, were developed during the last three decades in order to bridge this gap. Nevertheless,
the success of many of these prediction methods is limited, but their results are encouraging
since they enable the discovery of knowledge that is difficult to obtain by experiments. Thus,
despite many years of sequence analysis in biology, extracting biological insights from
sequences alone is still a challenging task. In my thesis, | describe two studies in which |
addressed this challenge.

First, I describe how codon-level information improves predictions of inter-residue
contacts in proteins by correlated mutation analysis. Genomic sequences contain rich
evolutionary information about functional and structural constraints on proteins. This
information can be mined to detect correlated mutations in proteins and address the long-
standing challenge of predicting protein three-dimensional structures from amino acid
sequences. Methods for analysing correlated mutations in proteins are becoming an increasingly
powerful tool for predicting contacts within and between proteins owing to the explosive growth
in sequence data and significant theoretical progress. Nevertheless, limitations remain due to
the requirement for large multiple sequence alignments (MSA) and the fact that, in general, only
the relatively small number of top-ranking predictions are reliable. To date, methods for
analysing correlated mutations have relied exclusively on amino acid MSAs as inputs. In my
thesis, | describe a new approach for analysing correlated mutations that is based on combined
analysis of amino acid and codon MSAs. | show that a direct contact is more likely to be present

when the correlation between the positions is strong at the amino acid level but weak at the

I



codon level. The performance of different methods for analysing correlated mutations in
predicting contacts is shown to be enhanced significantly when amino acid and codon data are
combined.

In the second study, I revealed a strong tendency in all kingdoms of life for N-
terminal domains in two-domain proteins to have shorter sequences than their neighboring C-
terminal domains. Given that folding rates are affected by chain length, I asked whether the
tendency for N-terminal domains to be shorter than their neighboring C-terminal domains
reflects selection for faster folding N-terminal domains. Calculations of absolute contact order,
another predictor of folding rate, provided additional evidence that N-terminal domains tend to
fold faster than their C-terminal neighboring domains. A possible explanation for this bias is
that faster folding of N-terminal domains reduces the risk of protein aggregation during folding
by preventing formation of non-native interdomain interactions. This explanation is supported
by protein expression analyses | performed which demonstrated that two-domain proteins with
a shorter N-terminal domain are much more abundant than those with a shorter C-terminal
domain. These findings, therefore, suggest a previously unrecognized mechanism for prevention
of aggregation of neighboring domains in multi-domain proteins.

The first study of this thesis was published in eLIFE:

Jacob, E., Unger, R. and Horovitz, A. (2015). Codon-level information improves
predictions of inter-residue contacts in proteins by correlated mutation analysis. eLife
2015;4:e08932.

The second study of this thesis was published in Cell Reports:

Jacob, E., Unger, R. and Horovitz, A. (2013). N-Terminal Domains in Two-Domain
Proteins Are Biased to Be Shorter and Predicted to Fold Faster Than Their C-Terminal
Counterparts. Cell Rep. 3 (4), 1051-1056.
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Chapter |

Introduction

1.1 Sequencing Methods

The determination of the first complete amino acid sequence of a protein by Sanger in 1955
showed that a protein has a unique amino acid sequence. Before that, it had been only
known that different proteins had different amino acid compositions and the common
assumption was that molecules of the same proteins are not identical to each other.
Sequencing projects during the 1950°s were a difficult manual process that consumed a lot
of time. For example, the determination of the complete amino acid sequence of insulin
(including 2 chains and disulfide bonds) by Sanger was an iterative process that lasted from
1945 to 1955 and led to approximately ten stand-alone publications describing each step
separately (Stretton, 2002). In the following decade, manual sequencing processes were
gradually improved and, consequently, the rate of sequence determination increased. By
the mid 1960’s, with the determination of the complete amino acid sequences of other
proteins including ribonuclease by Anfinsen, there were a total of 65 known sequences
(Table 1.1). By contrast with the advances in protein sequence determination technologies,
sequencing nucleic acids had remained problematic mostly because of difficulties in
purification and sequencing of long molecular fragments (less than ~500 bp). In 1977,
however, Sanger introduced a DNA sequencing method (Sanger et al., 1977) that made it
possible to sequence longer nucleotide fragments. His method became known as “Sanger
sequencing” or “first-generation sequencing”.

In the mid-1980’s, a significant increase in productivity was made possible due to
the automation of Sanger sequencing techniques. This advance led to a dramatic growth in
the number of determined sequences (Figure 1.1) and laid the foundations for the
sequencing of the first human genome. Eventually, in 2003, after almost 15 years of efforts
around the world, the sequencing of the first human genome was declared completed
(Table 1.1). Since then, much faster and cheaper sequencing methods have been developed
that are known today as “Next Generation Sequencing” methods (e.g. The lllumina MiSeq
and LifeTechnologies lon Torrent Personal Genome Machine (PGM)) and have made

sequencing accessible to more labs. These next-generation sequencing (NGS) methods are



based on massive parallel sequencing technology. In this technology, millions of
fragments of nucleotides from a single sample are sequenced simultaneously, allowing an
entire genome to be sequenced in less than one day. The easy accessibility and the short
experimental time of these methods enabled the rapid increase in the amount of research
being performed with nucleic acid sequencing. Consequently, the number of sequences
deposited in public databases has been growing exponentially. Importantly, NGS has also
become a platform to invent new research tools that are sequence-census based (Wold and
Myers, 2007). For example, NGS is used to find transcription factor binding sites using
ChlP-seq technology (Johnson et al., 2007), discover methylation patterns across the
genome using Methyl-seq, measure mMRNA expression using mRNA-seq, reveal folding

principles of the human genome (Lieberman-Aiden et al., 2009) and much more.

ea Prote RNA DNA 0. Of residue

1935 | Insulin 1

1945 | Insulin 2

1947 | Gramicidin S 5

1949 | Insulin 9

1955 | Insulin 51

1960 | Ribonuclease 120

1965 tRNAAla 75

1967 55 RNA 120

1968 Bacteriophage A 12

1977 Bacteriophage ¢X 174 | 174 5,375

1978 Bacteriophage ¢X 174 | 174 5,386

1981 Mitochondria 16,569

1982 Bacteriophage A 48,502

1984 Epstein-Barr virus 172,282

2004* Homo sapiens 2.85 billion

2009 Total base pairs in NCBI 1.35E+13
Sequence Read Archive (SRA)

2015 Total base pairs in NCBI 2.75E+15
Sequence Read Archive (SRA)

Table 1.1 Sequencing landmarks.
Table is based on the work of others (Attwood et al., 2011). * Completion of the human
genome was already declared in 2003.



Figure adopted from the work of others (Attwood et al., 2011) and a presentation by Teresa

Figure 1.1. Historical milestones in bioinformatics.
K. Attwood (with some modifications).



1.2 Databases

The increase in the number of known protein sequences prompted Margaret Dayhoff and
co-workers (Dayhoff et. al, 1965) to organize the first computerized collection of protein
sequences that initially comprised 65 sequences (the collection was called “Atlas of Protein
Sequence and Structure”). Dayhoff and her colleagues understood that tremendous
amounts of information about the evolutionary history and function are contained within
each sequence.

Advances in nucleotide sequencing brought about a need for organization and
analysis also of DNA and RNA sequences (Gingeras and Roberts, 1980). Several
nucleotide databases were, therefore, established. In 1982, the European Molecular
Biology Laboratory (EMBL) in Heidelberg released 568 sequences and GenBank, which
was established in December that year, brought 606 sequences to the public domain (Figure
1.1; table 1.1). The world of protein sequences, which to a certain extent was overshadowed
by the efforts to collect nucleotide sequences, continued to grow and reached a size of more
than 1660 amino acid sequences (Figure 1.1). The late 1980°s and early 1990’s, just before
the WWW emerged, were characterized by intense activity that gave rise to new sequences,
databases (e.g. Swissprot in 1986), characterization of protein families (e.g. PROSITE),
and data maintenance and support organizations (e.g. The European Bioinformatics
Institute (EBI)). By 1995, sequencing technologies made whole genome sequencing
feasible and the genomes of several organisms were sequenced including the first human
genome . In the 2000’s, Next Generation Sequencing (NGS) technologies led to enormous
amounts of sequence data that were collected in several public archives such as NCBI
Sequence Read Archive (SRA) and European Nucleotide Archive (ENA). As an example
for the dramatic increase in the amount of data produced, SRA consisted in January 2009
of 1.35E+13 nucleotide bases and in November 2015 was already storing 2.75E+15
nucleotide bases. In addition, the significant changes in speed, costs and flexibility of NGS
made it to become a central method that is used in international collaborations projects. An
example of such a project is The Cancer Genome Atlas (TCGA), which was initiated in
2005 as an organized effort to accelerate our understanding of the molecular basis of
cancer. Today, TCGA consists of many types of data (e.g. DNA and mRNA sequencing,
protein expression, copy number and DNA methylation) for thousands of samples.

Although sequences provide a substantial source of information and have drawn a

lot of attention over the years, valuable data of other types were also accumulating. One of



the main depositories that began to increase dramatically at the end of the 1980°s was the
protein data bank (PDB). The improvements in crystallization methods, the newly
established molecular biology capabilities to clone genes and express proteins, and the
technological advancements in computer software and X-ray detection methods, made it
possible to make substantial progress in protein structural determination (Berman, 2008).
Again, as in the case of biological sequences, the rapid development in all aspects of the
experimental procedures resulted in the dramatic growth in the number of solved structures
collected in the PDB. In addition to structure determination, numerous other experimental
methods were invented and improved during the years (e.g. single cell analysis,
Immunohistochemistry, methods to investigate protein-protein interactions). One example
is the development of microarray technologies to measure gene expression during the 90°s
(Lenoir and Giannella, 2006). These technologies became widely used and have produced
much information on gene expression in humans and other organisms under different
conditions. Today, the gene expression omnibus at NCBI (GEO) maintains enormous
amounts of microarray experiments data deposited by different laboratories across the

world.



1.3 Sequence Analysis

The first sequence alignments, which were carried out for insulin, ribonuclease and a few
other proteins, were based on a small number of homologous sequences from several
species. Comparing two amino acid or nucleotide sequences was one of the first types of
analysis that were required when sequencing data became available. In 1970, Gibbs and
Mclintyre described a simple method for comparing sequences that is called the dot matrix
or diagram (Gibbs and Mcintyre, 1970). In this method, the two compared sequences are
written along adjacent sides of a rectangular matrix with their N-terminal amino acids in
the top left-hand corner of the diagram. Within the matrix, a dot is plotted whenever a row
and a column share the same amino acid. Similarities of the two sequences are then
indicated by a diagonal line of dots. (Figure 1.2). This method is also able to reveal
insertions, deletions, and repeats when the same sequence is used in the horizontal and

vertical axis of the dot matrix.
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Figure 1.2. A dot matrix (diagram) obtained by comparing the human cytochrome c
(Y-axis, N-terminal at the top) and the cytochrome c of monkey, fish and
Rhodospirillum.

The figure is taken from previous work of others (Gibbs and Mcintyre, 1970).



Nevertheless, visual comparisons of sequences were tedious and involved
subjective assessments and, thus, computer-based statistical approaches were required.
Indeed, in the same year that the dot matrix was introduced, Needleman and Wunsch
(Needleman and Wunsch, 1970) presented their dynamic programing approach for global
sequence alignment. In their work, they described an iterative matrix procedure to find the
maximum match between two sequences, that is, the largest number of amino acids or
nucleotides in one sequence that can be matched with those of another sequence, while
allowing for all possible deletions (Needleman and Wunsch, 1970). In their method, the
problem is broken down into the smallest unit of comparison, a pair of amino acids. The
alignment is built progressively by starting at the C-terminal end of each sequence and then
moving ahead one amino acid pair at a time, allowing for various combinations of matched
pairs, mismatched pairs, or insertion/deletion of amino acids in one sequence. This process
results in every possible alignment between the two sequences and by using a scoring
system which prioritizes a match over a mismatch and penalizes gaps, the alignment with
the highest possible score was defined as the optimal alignment. An important modification
to their algorithm was the local sequence alignment method introduced by Smith and
Waterman (Smith and Waterman, 1981) in 1981. They recognized that the most
biologically significant regions in sequences were the segments that aligned well and not
the other less related regions that were not well aligned. Smith and Waterman extended
Needleman’s and Wunsch’s idea to find a pair of sub-regions, one from each of two long
sequences, such that there is no other pair of segments with greater homology (Smith and
Waterman, 1981).

Given that the local and global sequence alignment methods required a great deal
of time resources those days, a method that can perform a database scan for similarity in a
short time was highly needed. In 1988, Pearson and Lipman developed a program called
FASTA (Pearson and Lipman, 1988), which provided a rapid way to perform such
similarity scans. Two years later, a faster method for similarity search was introduced by
Altschul et al. (Altschul et al., 1990). basic local alignment tool, known as BLAST, has
been and is still a widely used sequence analyses program.

Comparing more than two sequences simultaneously (i.e. multiple sequence
alignment) required the design of new tools since dynamic programing implementations
were too computationally demanding. Thus, several improvements were introduced
(Johnson and Doolittle, 1986; Lipman et al., 1989), including the development of the
commonly used multiple sequence alignment (MSA) software tool called CLUSTALW



(Thompson et al., 1994). Since its first implementation, MSA became an increasingly
important tool in biology and has been used in molecular evolution to construct
phylogenetic trees (Felsenstein, 1989; Hogeweg and Hesper, 1984), identify distantly
related sequences of a protein family based on conserved regions (Gribskov et al., 1987),
predict functionally or structurally important residues (e.g. Casari et al., 1995; Karlin and

Brocchieri, 1996) and much more.

1.4 Recent Progress and Future Perspectives

As influx of biological data from different sources became a routine, efforts were made to
improve the use of many biological resources (e.g. the 2015 Nucleic Acids Research
(NAR) database summary paper reported over 1800 valid databases (Galperin et al.,
2015)). In addition, attempts to link related bioinformatics databases together and enhance
biological annotations, enabled an efficient retrieval of gene or protein related information
from diverse resources (e.g. MRNA expression, structural and functional data).
Increasingly, more nucleotide and amino acid sequences are linked to information from
other sources, such as 3D structures, protein and mRNA expression. Nevertheless, while
the number of sequenced genomes continues to grow exponentially, other types of
experiments have not kept pace. For instance, despite the great progress in experimental
determination of protein three-dimensional structures, we know many more protein
sequences than protein three-dimensional structures, and the gap is getting bigger. Indeed,
in order to bridge this gap, many bioinformatics applications which predict the properties
of proteins or genes (as their three dimensional structures or functions) based on sequence
data alone, were developed during the last three decades (Table 1.2). Many of these
methods combine information from diverse sources in biology along with amino acid or
nucleotide sequence information. Furthermore, although the success of many of these
prediction methods is limited, their results are encouraging since they enable the discovery
of knowledge that is difficult to obtain by experiments. Thus, with this theoretical progress,
the exceptional advances of sequencing technologies, and the increase in the amount and
availability of diverse data sources in biology it is clear that many insights remain to be

obtained through analysis of protein sequences.



Computational Types of information The purpose of the tool | Examples of

method used in analyses publication/Application
name
Neural networks  MSAs and secondary Predict protein (Rost and Sander, 1993)
structure data from the secondary structure from | (Jones, 1999), PSIPRED
PDB sequence alone

Neural network = Sequence and structural | Predict protein-protein | (Ofran and Rost, 2003a,
data of PDB complexes | interactions interfaces 2003b)
Bayesian Combines protein-protein  predicts whether a pair | (Zhang et al., 2012),
framework interactions data (e.g. of proteins interact PrePPI
Y2H) ,structural,
functional, evolutionary
and expression
information
Statistical model| ChIP-seq experiments Identifying transcription | (Wang et al., 2012a)
and nucleotide sequences | factor binding sites

Statistical MSAs and structural data | Predict the three (Balakrishnan et al.,
models dimensional structure of | 2011; Hopf et al., 2012;
proteins Jones et al., 2015;
Morcos et al., 2011)
Empirical MSAs, derived estimating the (Glaser et al., 2003),
Bayesian or ML | phylogenetic tree and evolutionary ConSurf server
algorithms protein structure conservation of

amino/nucleic acid

positions in a

protein/DNA/RNA

molecule
Table 1.2 Examples of applications that combine amino acid or nucleotide sequence
and other types of information in their analysis.



Chapter Z
Incorporation of codon data

in correlated mutation
analysis

2.1 Introduction

The explosive growth in sequence data from current high-throughput techniques enables
analysis of functional interaction patterns at the DNA or RNA level (e.g. RNA folding),
cellular level (e.g. regulation and organization, interactions between proteins) and the
amino acid residue level (e.g. protein contact prediction). In particular, genomic sequences
contain rich evolutionary information about functional and structural constraints on
proteins. For example, many computational methods for predicting protein three-
dimensional structures were developed over the years for homology modeling, i.e.
predicting structures using known three-dimensional structures with sequences that are
similar to that of the protein of interest. Such structures are, however, not always available
and evolutionary information found in patterns of correlated mutations in protein sequences
can then play a major role in predicting the 3D structure of a protein (de Juan et al., 2013;
Marks et al., 2012). Correlated mutations can arise since the effects of mutations which
disrupt protein structure and/or function at one site are often suppressed by mutations that
occur at another site (either in the same protein or in another protein). Such compensatory
mutations can occur at positions that are distant from each other in space, thus, reflecting
long-range interactions in proteins (Horovitz et al., 1994; Lee et al., 2008). It has often
been assumed, however, that most compensatory mutations occur at positions that are close
in space. This has motivated the development of computational methods for identifying co-
evolving positions that can be used as distance constraints in protein structure prediction
(Gobel et al., 1994) (Figure 2.1).

Methods of CMA consist of the following steps: first, a multiple sequence
alignment (MSA) for the members of an evolutionary related family of proteins is created.
Next, the frequencies of co-occurrence of all amino acids in all pairs of columns are

calculated and compared to those expected assuming that the frequencies of occurrence at



one position are independent of those at the second position. Finally, the correlations are

ranked according to the statistical and/or physical significance attached to them.

%

constraint f j)

inference Ho-c
contact in 3D
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— > << FHBFMDOOOD

correlated

Figure 2.1. Identifying co-evolving positions as distance constraints in protein
structure prediction.

The sequence of the protein (chain of gray circles) for which a 3D structure is to be
predicted is a member of a family of evolutionary related sequences (the MSA in light gray
letters). The evolutionary variation in the sequences (colored columns in the MSA) is
restricted by a direct physical contact (red circles on the right). This figure is taken from
previous work of others (Marks et al., 2011).

Various methods for CMA that have been developed in the past 15 years differ in
the measures that they employ for attaching significance to the correlations (de Juan et al.,
2013; Livesay et al., 2012; Mao et al., 2015). Early measures that were developed assume
that pairs of residue positions are statistically independent of residues at other positions
(Dekker et al., 2004; Gobel et al., 1994; Kass and Horovitz, 2002; Lockless et al., 1999;
Martin et al., 2005). Such methods include, for example, mutual information (MI) from
information theory (Gloor et al., 2005), observed-minus-expected-squared (OMES) in the
chi-square test (Kass and Horovitz, 2002), statistical coupling analysis (SCA) (Lockless
et al., 1999) and the McLachlan-based substitution correlation (McBASC) (Olmea et al.,
1999)

Statistically significant correlations in MSAs that do not reflect interactions
between residues in contact, i.e. false positives, can stem from (i) various indirect physical
interactions and (ii) common ancestry. The extent of false positives due to the latter source
is manifested in the large number of correlations between positions in non-interacting
proteins that can be observed when the sequences of non-interacting proteins from the same
organism are concatenated and subjected to CMA (Noivirt et al., 2005). Several

approaches for removing false positives owing to common ancestry were developed (Dunn



et al., 2008; Noivirt et al., 2005; Pollock et al., 1999; Wollenberg and Atchley, 2000) on
the basis of the early methods but their success in contact prediction remained limited.
False positives due to the former source, i.e. indirect physical interactions, can occur when,
for example, correlations corresponding to positions A and B that are in contact and
positions B and C that are in contact lead to a correlation for positions A and C that are not
in contact. Methods that remove such transitive correlations have been developed in recent
years. These methods, in contrast with the earlier ones, consider correlated pairs of residues
as being dependent on all other positions, thereby reducing the effect of noise due to
transitivity. Examples of such methods include Direct Coupling Analysis (DCA or DI for
Direct Information) (Morcos et al., 2011; Weigt et al., 2009), Protein Sparse Inverse
COVariance (PSICOV) (Jones et al., 2012) and Gremlin’s pseudo-likelihood method
(Kamisetty et al., 2013). These methods have been found to be very successful in
identifying contacting residues (Marks et al., 2012; Stein et al., 2015) and they outperform
earlier methods (Mao et al., 2015). Nevertheless, their accuracy, which is ~80% for the
correlations in the top 0.1% (ranked by their scores), drops to ~50% for the top 1% (Mao
et al., 2015). Given that the number of contacts in a protein with N residues is ~N (Faure
et al., 2008), it follows that for proteins with, for example, 100 residues (i.e. with 4,560
potential contacts between residues separated by at least 5 residues in the sequence) only
about 25% of the contacts (i.e. 23 of the top 1% 46 predictions) will be identified by these
CMA methods. In addition, these methods require large MSAs comprising thousands of
sequences in order to perform well and such sequence data are not always available.
Consequently, it is clear that much can be gained from further improvements in methods
of CMA.

In this thesis, | describe a new approach for analysing correlated mutations that is
based on combined analysis of amino acid and codon MSAs. | show that a direct contact
is more likely to be present when the correlation between the positions is strong at the
amino acid level but weak at the codon level (Figure 2.2). The performance of different
methods for analysing correlated mutations in predicting contacts was found to be

enhanced significantly when amino acid and codon data are combined.
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i j i j
GTG TGC GCC GAA CAA GCC GAG ACG GGG GTG TGC BCC GAA CAA GCC GAG ACT GGG
GTG TGT GCC GCC CAG GCT GAG ACG GGC GTG TGT B8R GCC CAG GCT GAG GGC
AGA TGC GCC CTT CCC AAA GTA ACG GGA AGA TGC GCA CTT CCC AAA GTA GGA
ATC TGC GCC CTG CAG AAG GAG ACG GGG atc T6c [BBBI CTG CAG AAG GAG ACG GGG
ACT TGT |GTC TTG TCT TAC AAA GGA ACT TGT GTT TTG TCT TAC AaA JGTH GGA
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Amino acid sequence
i J

VCAEQAETG
VCAAQAETG
RCALPKVTG
ICALQKETG
TCVLSYK
ECVGVSL
VCVMPKE
TCLLQYD
YCLASNK
LCESPID

®

OO0

Figure 2.2 Example of a pairwise correlation in a multiple amino acid sequence

alignment and two possible corresponding codon alignments.

A correlation at the amino acid level between two positions i and j may (top left) or may
not (top right) be accompanied by a correlation at the codon level. The premise of the
method introduced in my thesis is that a correlation at the amino acid level between two
positions is more likely to reflect a direct interaction if the correlation at the codon level
for these positions is weak (top right).

2.2 Methods

2.2.1 Collection of sequences

The growing availability of sequences of sufficient diversity as a result of advances in DNA
sequencing technologies over the past decade (Figure 2.3) enabled the significant progress
in protein structure prediction based on evolutionary information. Uniprot/TrEMBL
currently consists of more than 571,000 species, with a strong bias towards several heavily

sequenced species (6.6% of the whole database corresponds to 20 species that comprise



only 0.0035% of the total number of species). The most prominent source of sequences is

bacteria that account for more than 60% of the sequences in Uniprot/ TrEMBL (Figure 4).

Number of entries in UniProtkB/TTEMBL

IDDM! ! ! ! ! !
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Figure 2.3 Growth of Uniprot/TrEMBL in the last ~20 years.
Based onRelease 2015_10 of 14-Oct-2015 of UniProtKB/TrEMBL. The figure is taken
from Uniprot/TrEMBL statistics (http://www.ebi.ac.uk/uniprot/TrEMBLstats).
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Figure 2.4 Taxonomic distribution of sequences.
Based onRelease 2015_10 of 14-Oct-2015 of UniProtKB/TrEMBL. The figure is taken
from Uniprot/TrEMBL statistics (http://www.ebi.ac.uk/uniprot/ TrEMBLstats).
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2.2.2 Multiple sequence alignments

2.2.2.1 Overview of MSAs

Multiple sequence alignments (MSA) have been used in a wide range of bioinformatic
applications. MSAs are used to infer functional sites (Glaser et al., 2003; Pupko et al.,
2002), predict protein structure (de Juan et al., 2013; Marks et al., 2012), classify proteins
into families using sequence phylogenetics (Casari et al., 1995; Pethica et al., 2012) and
more. Although MSAs can be comprised of DNA, RNA or amino acid sequences, it is most
common to align proteins using only their amino acid sequences. Such an analysis has
advantages and disadvantages. For example, aligning nucleotide sequences instead of
amino acid sequences introduces frame shifts but, on the other hand, closely related
sequences can be more easily distinguished. The problem of frame shifts can be solved
with the use of codons instead of nucleotides. Nevertheless, for more distantly related
species, amino acid sequences may have the advantage of acting as a filter to reduce noise.
Multiple amino acid sequence alignments have, to date, been the exclusive input for

methods for analysing correlated mutations.

2.2.2.2 MSAs and correlated mutation analysis

MSAs consist of sequences that share an evolutionary relationship (i.e. homologs). These
sequences are usually collected using a sequence-based search method (Altschul et al.,
1990, 1997; Camacho et al., 2009), profile HMM (Eddy, 1998; Finn et al., 2011) or other
methods and then aligned using a multiple sequence alignment tool (Edgar, 2004; Katoh
et al., 2002; Notredame et al., 2000). The size of the MSA (i.e. the number of sequences
that it includes) depends on the level of sequence similarity between its members (e.g. an
alignment score), search method (e.g. blast or profile HMM as HMMER3) and types of
homology considered (e.g. sequences of orthologs only or of both paralogs and orthologs).
Other factors that influence the MSA quality and size are the databases that were used to
search for homologous sequences, the level of redundancy that was used for filtering and
more. The general rule of thumb is that larger MSAs contain more information.
Nevertheless, the tradeoff is that including more sequences can result in adding bias or
noise (e.g. bias towards a subset of related sequences in the MSA or certain species), low
quality alignment and inclusion of proteins with unrelated function. The relevance of these

factors needs to be considered in accordance with the application. In this thesis, in order



to correct the bias for certain species, a resampling technique is used before constructing
an MSA. The sequences for each MSA of a protein family are collected from representative
proteomes, i.e. proteomes each of which represents best a group of proteomes with similar
sequences (Chen et al., 2011). In this way, over- and under-represented species contribute
equally to the analysis. In addition, several methods for contact prediction described in this
thesis include a reweighting procedure as a correction for this and other biases (see the
section Regularization and reweighting of frequency counts).

In CMA, when one wishes to predict contacts within a protein family (i.e. intra-chain
interactions) with high accuracy as done here, it is advantageous to use as much
information as possible, i.e. sequences of distant homologs and both orthologs and
paralogs, as long as the bias towards a subset of related sequences in the MSA or certain
species is limited. On the other hand, when the goal is to predict contacts between two
different proteins (i.e. inter-chain interactions), the MSAs usually comprise fewer
sequences since only concatenated sequences of interacting proteins from the same
organism can be included (Hopf et al., 2014). In this thesis, each MSA is built from
sequences that are from the same protein family. A protein family is a group of proteins
that are closely related with respect to their function, structure or evolution. Our analysis
was done as before (Marks et al., 2011; Morcos et al., 2011) using MSAs from Pfam
families. The Pfam database is a large collection of protein families (more than 14,000
different families) each of which is described by an MSA and a hidden Markov model
profile (HMM) (Finn et al., 2014; Punta et al., 2012). HMM is a probabilistic model
(Rabiner, 1989) used for the inference of a homology structure from a set of aligned family
representative sequences (Eddy, 1998; Eddy and Wheeler, 2013; Krogh et al., 1994). A
high-quality seed alignment is used to construct the profile HMM of a domain family with
which it is then possible to search any large sequence database (e.g. UniprotKB) for all
instances corresponding to a particular domain family. In this way, a large database of
MSAs, representing domain families with diverse structures and lengths, was used for the
analysis. Note that in most cases, each MSA contains many sequences with known

structures, thereby helping to assess the reliability of contact prediction.



2.2.2.3 Generation of codon and amino acid MSAs

Protein sequence datasets were collected from Pfam version 27.0 (Finn et al., 2014) based
on representative proteomes (Chen et al., 2011) at 75% co-membership threshold (RP75)
in order to avoid overrepresentation of certain species. Protein coding sequences (CDS) of
the collected proteins from Pfam were retrieved based on Uniprot cross reference
annotations (for Refseq, Ensembl, EMBL and Ensembelgenomes databases in that order
of priority) (Cunningham et al., 2014; Kanz et al., 2005; Pruitt et al., 2012) using the
EMBL-EBI's WSDbfetch services (McWilliam et al., 2009) and Ensembl REST API (Beta
version) (Yates et al., 2015). All collected CDSs were aligned in accordance to the Pfam
HMM-based MSAs using tranalign tool from the EMBOSS package (Rice et al., 2000).
Pfam domain families with more than 2,000 successfully retrieved coding sequences were
used for further analysis (total of 551 MSA’s). Only families with a known crystal structure
at a resolution of 3 A or better (more than 95% of the families have at least three such
structures) and with an overlap of at least 80% of the domain sequence to the ATOMSs
sequence in the solved structure were included in the analysis (total of 460 MSA’s). Our
analysis was also restricted to proteins with more than 200 residues that have a large
number of potential contacts for prediction (114 MSA’s). PDB structures were assigned
to Pfam families in accordance to the mapping in the files downloaded from

http://www.rcsb.org/pdb/rest/hmmer?file=hmmer pdb all.txt and

ftp://ftp.ebi.ac.uk/pub/databases/msd/sifts/text/pdb chain uniprot.Ist. PDB  structures

were retrieved and their coordinates were extracted using the bio3D R package (Grant et
al., 2006). Pairwise sequence alignments for mapping were performed using Biostrings
[Pages H, Aboyoun P, Gentleman R and DebRoy S. Biostrings: String objects representing

biological sequences, and matching algorithms. R package version 2.34.1.].

2.2.3 Methods for analysing correlated mutations

Early methods for CMA relied on the assumption that pairs of positions are statistically
independent of other positions with respect to their amino acid frequencies (Gobel et al.,
1994) (Dunn et al., 2008; Gloor et al., 2005; Kass and Horovitz, 2002). These methods do
not take into account transitive correlations (chaining effect) and, to a certain extent,
conserved positions (Fodor and Aldrich, 2004) and, consequently, result in many
inaccurate predictions. By contrast, methods that were developed more recently (Baldassi


http://www.rcsb.org/pdb/rest/hmmer?file=hmmer_pdb_all.txt
ftp://ftp.ebi.ac.uk/pub/databases/msd/sifts/text/pdb_chain_uniprot.lst

etal., 2014; Feizi et al., 2013; Jones et al., 2012, 2015; Kamisetty et al., 2013; Marks et al.,
2011; Morcos et al., 2011; Weigt et al., 2009) consider the amino acid frequencies at a pair
of positions to be dependent on the frequencies at all other positions, thereby reducing
noise due to transitivity (Figure 2.5) and introducing a substantial improvement relative to
the earlier methods (Figure 2.6). Nevertheless, recent methods require more extensive
computations. In this thesis, both the early and more powerful recently developed contact

prediction methods were examined.

Physical contacts Observed Predicted
correlations contacts

Y 0 A el o
é A

A J Df s EN

D C x C ]

?Dj/ “c DIl [ ]

B Causative [ Transitive

Figure 2.5 Transitivity (indirect) effects in protein contact prediction.

Transitivity occurs when correlations due to direct (causative) interactions between
residues A and B, A and D, and residues D and C result in a transitive correlation between
residues B and C. Transitive correlations can be stronger than causative correlations if, for
example, two non-interacting residues have many common neighbors. This figure is taken
from previous work of others (Marks et al., 2012).
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Figure 2.6 Protein contact prediction by representative early and recent methods.

Protein contact prediction for the human Ras protein family using the early mutual
information (MI) method and the more recent maximum entropy-based direct information
(DI or DCA) methods (blue and red, respectively). The 150 predicted contacts with highest
score obtained from both methods are shown in the protein contact map (in gray) derived
from the experimentally determined structure of Ras. This figure is taken from previous

work of others (Stein et al., 2015).
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2.2.3.1 Early methods

2.2.3.1.1 The OMES method

The score for a pair of positions i and j, S (i,j), for the OMES (Observed Minus Expected
Squared) method is calculated, as follows (Fodor and Aldrich, 2004; Kass and Horovitz,
2002):

(0BSg; b ~EXPg, b )?

SomEs (i;j) = Xalb

where OBSqp; and EX Pop; are the respective observed and expected number of sequences

Nyalid

in the MSA with residue type a at position i and residue type b at position j. N,4;i4 1S the
number of sequences in the alignment that have non-gapped residues at both i and j
positions. Since gaps are excluded from the Pfam HMM based MSA before analysis (see

details in the source code at https://github.com/etaijacob/CMA), Nyq1ia = 1.

2.2.3.1.2 The Ml method

Mutual information, MI, measures the reduction of uncertainty of one position given the
information for the other (Cover and Thomas, 2005). MI can be viewed as the degree of
correlation between two positions. The score for the M1 method is calculated as follows

(Gloor et al., 2005):
21 21

. faiajip
Smi(i,j) = ZZf(la]b) log ZCEIE)
f(za)f(m

a=1b=
where f(ia) and fp) denote the respective frequencies of occurrence of residue type a at

position i and residue type b at position j and fia; j») denotes the joint probability of

occurrence of residue type a at position i and type b at position j.
2.2.3.1.3 Correction for phylogenetic background and entropic noise

Further improvements to MI, OMES and other methods can be done using correction
methods that take into account the phylogenetic and entropic bias in the sequence family.
Entropic noise originates from insufficient sequences in the MSA for adequate sampling
of all residue types. Phylogenetic background refers to correlations due to the pattern of
the underlying evolutionary tree. The correction method used in my analyses called average
product correction (APC) is based on the assumption that each position ina MSA may have

a propensity for a specific background signal My, which relates to its entropy and


https://github.com/etaijacob/CMA

phylogenetic history. The background My, for any two positions can be approximated by
the product of their propensities (Dunn et al., 2008). In the case of MI, an average product
correction (APC) term is subtracted from the MI score for each pair of positions (the Ml
method including the APC correction is called Mlp). The APC term, which is a measure

of the background MI shared by positions i and j, is given by:
Ml M)

APC(i,j) = 22

where the terms in the nominator are the respective average MI values of positions i and |
with all other positions in the alignment and the term in the denominator is the average

background M1 of all the positions in the alignment. The MIp score is given by:
Sur, (L)) = Sy (6, ) — APC(L, j)



2.2.3.2 Recent methods

2.2.3.2.1 Introduction to recent methods

Multivariate statistical methods (Balakrishnan et al., 2011; Ekeberg et al., 2013; Jones et
al., 2012; Kamisetty et al., 2013; Morcos et al., 2011)and other recently developed methods
(Feizi et al., 2013) are able to remove noise originated from transitivity and, thus, detect
direct contacts more accurately than earlier methods. Employing these methods has
become possible also because of the enormous increase in the number of sequences (i.e. a
larger sample size) and the availability of more computing resources over the years. The
first method developed, Direct Coupling Analysis (DCA or DI for direct information), was
implemented using the message passing algorithm (Weigt et al., 2009), a computationally
intense procedure that required a long time to complete a prediction for a very small
number of pairs of positions (~4 days for 60 contacts on a single CPU). A significant
breakthrough in the approximation method, which drastically reduces the computation time
(Morcos et al., 2011), was introduced 2 years later. Other methods were also developed
that include Protein Sparse Inverse COVariance (PSICOV) (Jones et al., 2012, 2015), a
Bayesian network algorithm (Burger and van Nimwegen, 2010), Gremlin's pseudo-
likelihood method (Kamisetty et al., 2013), the pseudo-likelihood maximization DCA
(pImDCA) method (Ekeberg et al., 2013) and a network deconvolution approach based on
spectral decomposition of the correlation matrix (Feizi et al., 2013). Here, | describe in
more detail the two methods, DCA and PSICOV, which were chosen to assess our

approach.

2.2.3.2.2 The Direct Coupling Analysis (DCA) method

2.2.3.2.2.1 Description of the DCA method
By contrast with the early methods, frequency counts in DCA are reweighted in order to

avoid overrepresentation of similar sequences in the analysis. The weight of each sequence,

a, is determined by its similarity to all the other sequences in the MSA. The weight mi of

sequence a is given by:

M
my = Z I(a,s;),
i=1

where s; is the sequence in row i in the MSA with M sequences and I(a, b)equals 1 if the

sequence similarity between a and s; is greateror equal t00.8 and 0 if otherwise. Note that



using a threshold of 1 instead of 0.8, would reweight each sequence by the number of
times it appears in the MSA, thus removing simple sequence repeats. The effective

number of independent sequences is defined here for later use by:
1
Mesr = Xo=1 —
In order to reweight the contribution of each sequence to the total frequency counts

according to its similarity to other sequences, the marginal and joint frequency counts are

calculated as follows:

__1 (2 M1 e
fl(A) - )L+Meff (q + a=1ma 6A'Ai )1

1
/1+Meff

A 1

Where in the amino acid analysis A and B designate amino acid types and q equals 21. A}

and Afdesignate the amino acid type at specific position i or j in sequence a for i,j =

1, ..., L, where L is the sequence length. In the codon analysis case, A and B designate

codon type and q equals 65, and Af and Ajdesignate the codon types. 5 denotes the

Kronecker symbol, which equals one if the two indices agree and zero if otherwise. A is the
pseudo-count which is equal here to M,rr and will be discussed in the next paragraph.
Thus, for example, if a group of 50 out of 100 sequences in a given MSA has a sequence
similarity of more than 80% among all group members, each of these members will
contribute 1/50 of its original count for the frequency calculations.

DCA uses the inverse covariance matrix (defined below) to predict direct coupling.
In order to ensure that the covariance matrix is invertible (that is, the probability
distribution is unique), a pseudo-count, A, is used for regularization of the above frequency
counts (Neher, 1994) for finite sample effect. In the extreme cases, the pseudo-count
prevents counts from being equal to zero when there are not enough sequences in the MSA
(i.e. finite sample effect) to sample all possible amino acids or codon pair combinations.
For example, if in a given MSA there is not a single observation that accounts for the joint
occurrence of arginine in column i and lysine in column j, instead of having a frequency

count of zero, it will have a value of

1 A 1 Meff _ 1
A+Meff q? - 2Mesr q? - 2q?

following the pseudo-count addition.

The covariance matrix is:

Cij(A,B) = f;;(4,B) — fi(A)f;(B),



and the coupling strength between amino acid types A and B, or codon types in the case of

codon analysis, at positions i and j, respectively, denoted as e;; (4, B), is approximated by
e;j(A,B) = —(C‘l(A,B))ij.

Let us define H;;, which can be interpreted as the Hamiltonian of positions i and j

ji
corresponding to the total coupling energy, e;; (4, B), and the local fields, h;(A) and
h;(B).

H;j = —(e;;(4,B) + hi(A) + h;(B)).
The direct coupling is therefore,

Pgir(A:B) = ZLUGXP(—HU),

whereZ;; is the partition function (i.e. the normalizing constant). The local fields, h;(A)
and h;(B), are determined for each pair A and B at positions i and j, respectively, by

adjusting the marginal distributions of Pi‘}"r(A,B) to the reweighted frequency counts

defined above, f;(A) and f;(B), as follows:
fi(A) = ¥p P47 (A, B)and f;(B) = ¥4 P4 (A, B).
Pi‘}ir, like the Boltzmann distribution, shows that coupling with lower energy will always
have a higher probability than coupling with a higher energy.
Finally, the direct information formula is similar to the MI’s, except for the joint
frequency counts, f;;, that were replaced by the direct coupling, Pi‘f-ir. Therefore,
P (4,B) )

— dir
Dlij = 2ap P (A.B) In (fi(A)fJ-(B)

2.2.3.2.2.2 DCA Model formulation for continuous random variables
Recall that the model of the DCA method is defined by the following distribution

function:

1
P(Al, ...,AN) = Eexp Z eij(Al-,Aj) + Z hl(Al)
i

i<j

Given that the aligned protein data are limited, many different probability distributions can
be consistent with it and the choice is made by finding the probability distribution that both
satisfies the constraints of marginal and joint frequencies and maximizes the entropy. For
simplicity, I describe here how the model is derived by satisfying those constraints for the

case of continuous random variable but it is equivalent to that used in the DCA procedure.



Let X = (x4, ...,x;)T € RE be a multivariate random variable. We require that the

model will maximize the entropy
S =—[, P(X)InP(X)dX,
and simultaneously meet the following constraints:
The first natural requirement for a probability distribution is that its integral equals one:

f P(X)dX =1
X

The second constraint is that the first moment of variable x;, (x;), should be equal to

sample mean over M sequences in the MSA ineachi =1, ..., L,

1 .
(x;) = f P(X)x;dX = i Z X" =X
X m=1

Equivalently, the third constraint requires that the second moment of the variables x;

and x;, {x; x;), should be equal to its corresponding empirical expectation,

M
1
(x;ix;) = f P(X)x;xjdX = i z x{"x" = XiX;
X m=1

Finding the maximum of function S subject to the above three constraints is done using the
method of Lagrange multipliers (Mead and Papanicolaou, 1984; Stein et al., 2015). With
the Lagrange multipliers a, f = (B;)i=1,... and y = (¥;)=1,.,. corresponding to the first,
second and third constraints respectively, the Lagrangian £ = L(P(X); a, B,y) is defined

as,
L=S+all) =D+ ) Bilw) =T + ) vi(Grix) — F%)

The maximum is then obtained by setting the derivative of £ to zero with respect to the

unknown density P (X), given the definitions of the first and second moments above,

0% () -1+ +ZL: +zL: =0
) nP(x a izlﬁixi izlyijxixj—

The solution is therefore the Boltzmann distribution,

P(X;B,y) =exp(—1+a+ X Bix; + Xty vij xixj)=

) L L
7 €XP {— (Z Bixi — Z Yij xﬂj)}
=1 i=1




With the normalization constant (also called the partition function) derived from the first
constrained,

L L
Z(B,y) ‘=f exp (Z Bix; + Z)/ij xixj> dx = exp(1 — )
-1 i-1

x
The determining parameters of the probability distribution above, the Lagrange
multipliers B and v, that are equivalent to the coupling parameter, e;;(o, w), and h;(o)
and h;(w) from the Pg-” formula described earlier, can be estimated from the closed-
form solution in the case described here for the continuous variable model. In general,
the Lagrange multipliers § and y can be specified in terms of the empirical mean and the
inverse covariance matrix, which is determined from the empirical correlation matrix,
C™ (20, 27) = fig (30 %) = fix) f5(x)-

Consequently, the maximum entropy distribution for the empirical first and second
moments is found to be the multivariate Gaussian distribution. Further details can be found
in (Morcos et al., 2011; Stein et al., 2015). The same numerical solution is obtained for the

categorical variable using the mean-field approximation on the truncated Taylor series
(Baldassi et al., 2014; Morcos et al., 2011).



2.2.3.2.2.3 Extension of categorical variables to binary representation

Furthermore, the categorical variables as represented in the MSA, can be extended using a
binary representation (see figure 2.7) to a continuous one, with the advantage of the
analytical framework (Baldassi et al., 2014; Stein et al., 2015).

L

X(O’)Z 110 --- {0101t - {0 --- 1010 - 16{0:1}&;

q q q

Figure 2.7 Illustration of binary translation of a categorical representation of amino
acids.

The binary translation, & — {0,1}*9, maps each vector ofcategorical random variables, X €
QL, here represented by a sequence of amino acids from the amino acid alphabet, Q = {A,
C,D, E F, G H LK, L, M, N, P, Q, RS, T, VW, Y,—}, onto a unique binary
representation, X (o) € {0,1}*9. This figure is taken from previous work of others (Stein
etal., 2015).



2.2.3.2.3 The PSICOV method

PSICQV is based on the sparse inverse covariance technique (Meinshausen and Bithlmann,
2006) and estimates the coupling effect between two positions in the protein based on the
MSA of its related family members. As the DCA method, PSICOV method aims to correct
for transitivity and also uses in its recipe the inverse covariance matrix (see description in
the global model introduction above). As described above, given the observed marginal
frequencies,
fi(4) = % f=1 6A,A?!
fij (4,B) = %ZZI:l 5A,A§‘ 63,,4;-"
withl <i,j < L,1 < A, B < q and 6 denoting the Kronecker symbol, which equals one if
the two indices agree and zero otherwise. The empirical covariance matrix is then,
Cij(xi ;) = fij(x %) = fi ) f.(xp)-
Assuming that the underlying distribution of the data is multivariate Gaussian, in the
inverse covariance matrix, C~*, the element C~*;; represents the covariance between the
residuals resulting from a regression of i with all other positions and the residuals resulting
from the regression of j with all other positions. Thus, the matrix of partial correlation
coefficients for all pairs of positions can be obtained using the Pearson correlation
coefficient as follows:
C™Y
As stated earlier, the empirical covariance matrices of MSAs are singular because the
number of observed variables is often smaller than the dimensionality of the problem. Since
the matrix cannot be directly inverted, PSICOV method uses the sparse inverse covariance
estimation. In general, protein contact maps are sparse since only about 3% of all residue
pairs in a protein structure tend to have a direct contact. This method uses this expected
sparsity (i.e. low number non-zero terms in the matrix) of the covariance matrix as a
constraint on the obtained solution. The PSICOV method used in this thesis, is based on
the graphical Lasso technique (Banerjee et al., 2008; Friedman et al., 2008). This method
estimates the inverse covariance matrix, given S, the empirical covariance matrix with d x
d dimensions, by minimizing the objective function:

trace(50) —log(det®) + p Z |®l-j|
i,jed



The third term is the regularization part, a type of a penalty (which is also called £; norm)

that favors sparse solutions in the sense that many of the positive values in @ will become

zero during the minimization process.

The norm of contacting residues i and j is the sum of the 20 x 20 absolute values in @,

corresponding to the 20 amino acid types observed in the alignment columns i and j:
Sicjontact — Zablgfljb ’

for a and b amino acid types.

The score used for prediction is corrected for entropic and phylogenetic noise using the

average product correction (APC), exactly as described above concerning the MI method:

geontact gcontact
(Sppntact — ccontact __ 2@X) Jx
tj APC tj gcontact !

whereSE’5 ¢ and S¢77y“““are the mean norm between column i and all other columns or

column j and all other columns, respectively. Scontactisthe mean norm across whole MSA.
In the implementation of PSICOV, as used in this thesis, additional standardization is done

to this score for the final prediction output.



2.2.4 Contact definitions and performance evaluation

2.2.4.1 Choosing contact definitions for the evaluation

In order to assess the accuracy of contact predictions we must first decide which atom types
and distance cutoffs will be used to define a contact (Yuan et al., 2012). In CASP (Moult
etal., 1995, 2011) and many other applications (Jones et al., 2012; Kamisetty et al., 2013)
residues are defined as being in contact if the distance between their Cpg atomsis<8 A. In
several other applications (Baldassi et al., 2014; Morcos et al., 2011), a contact is assumed
to exist if at least one inter-atomic distance between the residues is < 8 A. The former is
referred here as the Cg-based definition and the latter as the “all” definition. A direct
physical contact occurs when two heavy atoms of the respective amino acids are at a
distance < 3.5 A. We, therefore, examined which of the above two definitions is better at
identifying such direct contacts. We then used the more accurate definition to assess the
performance of CMA methods in contact prediction. The examination was performed on a
compilation of a non-redundant set of thousands of proteins with an available crystal
structure (next section describes the technical details of this analysis). We determined the
fraction of the amino acid pairs defined as contacts using the Cg-based definition or the
“all” definition that are actually in direct physical contact (using the definition given
above). This calculation was done separately for each protein. Direct physical contacts
were found to comprise 30% of the interactions identified using the Cg-based definition
and only 10% of the interactions identified using the “all” definition. We, therefore,

considered the Cp-based definition to be better for our analysis (Figure 2.8).

2.2.4.2 Procedure for determining physical contacts

A non-redundant set of 2,481 PDB entries was downloaded from the CullPDB website
(Wang and Dunbrack, 2003, 2005) at http://dunbrack.fccc.edu/Guoli/pisces_download.php
on Feb. 25th, 2015. The downloaded set was compiled based on the following properties:

(i) a protein sequence identity cutoff of 20%; (ii) structures with an X-ray resolution higher
than 1.6 A; and (iii) an R-factor cutoff of 0.25. For each protein, | identified the residue
pairs in contact according to the “all” and Cg-based definitions. The fraction of residue
pairs that are in a true physical contact (i.e. if they have at least one pair of atoms with a
distance < 3.5 A) was then calculated for each of these sets. Only pairs of residues that are
separated by at least five amino acids along the protein sequence were considered.


http://dunbrack.fccc.edu/Guoli/pisces_download.php

750
[ . CB<81&
B Al<8A

2 s00f

)

o

—

Q

Y -

o

— —r—
@ i
Q0

£

> 250 | .

| N

00 01 02 03 04 05 06 07 08 09 10

Fraction of residue pairs in physical contact

Figure 2.8 Histogram of the fractions of residue pairs in physical contact out of those
considered to be in contact according to two widely used definitions.

Residue pairs defined to be in contact if at least one inter-atomic distance between them is
< 8 A (designated ‘All’) or if the distance between their Cg atoms is < 8 A were identified
in 2,481 proteins with high-resolution structures. The fraction of these residue pairs that
are in direct contact, i.e. with a distance < 3.5 A between two of their respective heavy
atoms, was then determined for each protein. Only pairs of residues that are separated by
at least five amino acids along the protein sequence were considered.

2.2.4.3 Evaluation of prediction accuracy

The evaluation was based on the all structures with the highest resolution (at least 3 A) but,
in cases where families have more than 30 known structures with unique sequences, only
the 30 with the best resolution were used (in cases of structures with the same resolution
we arbitrarily chose one). The average accuracy of contact predictions for all the crystal

structures of each domain family was then calculated so that domain families with many



crystal structures would not be over-represented. Accuracy was calculated as the
proportion of true contacts from the N pairs with the highest score in that set. We evaluated
the improvement of our method using the difference in the area under the curve (AUC) of
the accuracy vs. number of predicted pairs of our method relative to the results of the
original OMES, MI, Mlp, PSICOV and DCA methods. AUC was calculated using the auc

function in MESS package in R with the default parameters.

2.2.5 Contact prediction implementation

The Direct Coupling Analysis (DCA) method (Morcos et al., 2011) was implemented and
optimized in R and C for amino acid and codon MSAs based on a Matlab source code
provided by Weigt et al. (http://dca.rice.edu/portal/dca/download). The PSICOV code was

downloaded from http://biocinfadmin.cs.ucl.ac.uk/downloads/PSICOV/ and used for the

predictions based on amino acid MSAs with the default parameters for faster options as
recommended by the authors (-p -r 0.001 and with the -1 option in order to avoid using the
APC term). The PSICOV code was modified in order to carry out the same analysis for
codon MSAs and a python script was implemented to perform the whole analysis as done
for the other methods using Pfam MSA files in Stockholm format and fasta MSA files as
inputs. PSICOV was used here either with the APC for amino acid MSAs or without the

APC for the predictions based on both amino acid and codon MSAs.

2.2.5.1 Available software for CMA analysis

The R and Python source codes for the contact prediction by all methods, C source code
modifications to PSICOV V2.1b3, R source code for structure-domain sequence mapping

and python scripts for generating codon MSAs are available at https://etaijacob.github.io/.

Details on the relevant R packages that will be available on CRAN will also be provided
at: https://etaijacob.github.io/.

2.2.6 Other applications using codon information - Deleterious SNPs
prediction

2.2.6.1 SNPs Datasets collection

Several methods for predicting damaging SNPs were successfully developed over the
years. One of the best performing methods is PolyPhen-2, which is based on a

classification method that uses two different datasets for training and testing


http://dca.rice.edu/portal/dca/download
http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/
https://etaijacob.github.io/
https://etaijacob.github.io/

(http://genetics.bwh.harvard.edu/pph2/dokuwiki/ media/nmeth0410-248.pdf). Here, |

used these two datasets to train and test a new classifier for this purpose. In order to assess

if combining codon information with other features improves the performance of
deleterious SNP prediction, I built a new classifier which uses both amino acid and codon
information. One dataset used was HumDiv, which is compiled from all 3,155 damaging
alleles annotated in the UniProt database as causing human Mendelian diseases and
affecting protein stability or function. This dataset also includes 6321 non-damaging
SNPs defined here as positions at which there is a difference between the human protein
and its closely related mammalian homologs. The second dataset, HumVar, consists of all
the 13,032 human disease-causing mutations from UniProt. This dataset also includes
8,946 human nonsynonymous single-nucleotide polymorphisms (nsSNPs) without

annotated involvement in disease, which were treated as non-damaging.

2.2.6.2 Generation of independent variables for the prediction

The evolutionary conservation at the position of a SNP in a protein was used as the
independent variable for predicting whether it is deleterious or not. | estimated such
conservation by calculating the entropy at the SNP’s location in the multiple sequence
alignment of that protein and its homologs. Calculations were restricted to SNPs that are
located within domain regions of Pfam families in proteins. Therefore, families from the
Pfam database (RP75 redundancy level and Pfam version 27) that included a protein
member with an indicated SNP in its domain region, were those considered in the analysis.
This resulted in 1005 MSAs of different domains with mapped SNPs. The transcripts for
the codon based MSAs were collected based on Uniprot cross reference annotations (for
Refseq, Ensemble, EMBL and Ensembelgenomes databases) and aligned in accordance
to the proteins MSAs using tranalign software tool. The entropy for each mapped SNP for
the proteins MSAs and the transcripts MSAs was calculated for all SNPs positions with
less than 50% gaps in the alignment. In order to include in the same analysis the entropy
measurements of SNPs from different domains with MSAs of different size and
compositions, each entropy value was standardized (that is, centered by the mean and
scaled by the standard deviation of the entropy values).

2.2.6.3 Prediction model

| used multivariate logistic regression to estimate the probability of an SNP to be

damaging or non-damaging (i.e. a binary response) from the entropy calculations (i.e.


http://genetics.bwh.harvard.edu/pph2/dokuwiki/_media/nmeth0410-248.pdf

independent variables) of the amino acid and codon MSAs. The regression model is
defined as follows:
Let Y be the probability for a SNP to be damaging. The multiple logistic regression is

defined as follows:

In ((1 f Y)) =a + b,Zscore(H(AA)) + byZscore(H(C))

where Ly) is the odds ratio of a SNP to be damaging compared to non-damaging, H(AA)

and H(C) are the conservation scores based on the amino acid and codon sequences,
respectively, and Zscore indicates the standardization function.

The logistic regression coefficients, b, and b, can be used to interpret the relation
between the codon and the amino acid based independent variables. Performance
evaluation consists of data divided into two equally sized sets: test and learning (i.e. two-

fold cross validation).



2.3 Results

2.3.1 The rationale of the method

The key premise underlying the method introduced in this thesis is that a correlation at the
amino acid level between two positions is more likely to reflect a direct interaction if the
correlation at the codon level for these positions is weak (Figure 2.2). In other words, it is
assumed that cases of strong correlations at both the amino acid and codon levels for a pair
of positions are less likely to reflect selection to conserve protein contacts and more likely
to reflect selection to conserve interactions involving DNA or RNA and/or common
ancestry. Given this rationale in mind, we decided to test whether contact identification
improves when all the pairs of positions are ranked using a score that increases with (i)
increasing strength of the correlation at the amino acid level and (ii) decreasing strength of
the correlation at the codon level. Such a score, S;, is given, for example, by:
Si = Si*(aa)/Si(c),

where Si(aa) and Si(c) are the scores generated by method i (e.g. MI) for the amino acid
and codon alignments, respectively, and the value of the power o is determined empirically

depending on the method (see below).

2.3.2 Performance analysis and comparison

Our approach was tested for the OMES (Kass and Horovitz, 2002), M1 (Gloor et al., 2005),
MIp (Dunn et al., 2008) and DCA (Marks et al., 2011; Morcos et al., 2011) methods using
114 MSAs each comprising at least 2000 sequences of length between 200 and 500
residues. In the case of the PSICOV method (Jones et al., 2012), only 86 MSAs out of the
114 MSAs were used since the others didn’t pass this method’s threshold for amino acid
sequence diversity. Each MSA also included at least one sequence with a known crystal
structure at a resolution < 3 A in which at least 80% of all the residues are resolved. The
mean accuracy of contact identification was plotted as a function of the top ranked number
of predicted pairwise contacts (Figure 2.10) or as a function of the top ranked fraction of
protein length, L (Figure 2.9). Residues were considered as being in contact if the distance
between their Cp atoms is < 8 A following the definition used in CASP experiments
(Ezkurdia et al., 2009) and other studies (Kamisetty et al., 2013; Skwark et al., 2014) (see
also Figure 9). The results show that the PSICOV and DCA methods outperform the



OMES, MI and MIp methods (Figure 2.9, 2.10) as established before (Mao et al., 2015).
They also show that combining amino acid and codon data leads to an improvement in the
predictions by OMES, MI, DCA and PSICOV. In the case of MlIp, however, no
improvement was observed despite the fact that this method performs worse than DCA and
PSICOV. In Mlp, a term called average product correction (APC) is subtracted from the
M1 score for each pair of positions in order to reduce false positives. Removing this
correction from PSICOV where it also exists and including the codon data yielded the best
method (Figure 2.9, 2.10). Hence, we can conclude that there is an overlap between the
background noise reduced upon including the APC term and codon data and that including

the latter can be more advantageous as we observe for PSICOV.
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Figure 2.9 Plots of the mean accuracy of contact identification by various methods
of correlated mutation analysis as a function of the top ranked fraction of protein
length, L, number of predicted pairwise contacts.

The mean accuracies of contact identification by the OMES, Ml, Mlp, DCA and PSICOV
methods are shown either with or without incorporating codon data. Residues were defined
as being in contact if the distance between their Cp atoms is < 8 A. PSICOV* indicates

that it was carried out without the APC.
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Figure 2.10 Plots of the mean accuracy of contact identification by various methods
of correlated mutation analysis as a function of the top ranked number of predicted
pairwise contacts.

The mean accuracies of contact identification by PSICOV, DCA MIp, Ml and OMES are
shown either with or without incorporating codon data. Residues were defined as being in
contact if the distance between their Cp atoms is < 8 A.

2.3.3 Method optimization

The extent of improvement increases with increasing values of the power o until a
maximum is reached (Figure 2.11A) at a value of o that depends on the method used and

different values of amax Were, therefore, chosen accordingly. Cross-validation by dividing
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the MSA data into training and test sets showed that the values of amax are stable, i.e. they
do not vary depending on the set of MSAs (Figure 2.12). Given these values of o max, the
significance of the extent of improvement was assessed by comparing for each MSA the
accuracy of the contact predictions using the different methods with and without
incorporating codon data. Significance levels were determined using two non-parametric
tests: (i) the Wilcoxon signed-rank test, which takes into account both the number of MSAs
for which the accuracy of the contact predictions increases upon incorporating codon data
(e.g. 81 in the case of DCA) and the magnitude of the improvement; and (ii) the sign test,
which only considers the number of MSAs with improved accuracy. The extent of
improvement achieved by incorporating codon data was found to be highly significant as
indicated by the P-values obtained using both tests (Figure 2.11B).
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Figure 2.11 The effect of the relative weights of amino acid and codon information
on contact prediction improvement and its statistical significance.

(A) The median of the extent of improvement in contact prediction for 114 MSAs (86 in
the case of PSICOV) is plotted as a function of the value of the power o which determines
the relative weights of the amino acid and codon correlations in the score, Si (Si =
Si*(aa)/Si(c), where Si(aa) and Si(c) are the respective amino acid and codon scores
generated by method i). The extent of improvement was determined by calculating the
difference in the areas under the curves (AUC) of prediction accuracy vs. number of
predictions for each method i with and without incorporation of the codon data normalized
by the area under the curve generated without codon data. The analysis was done for
domains of length between 200 and 500 residues and at least 2000 coding sequences in
their MSA. The value of o which maximizes the median improvement was used for
predictions. Maximal respective improvements of 3.9% and 4.2% were found for DCA
and M1 when a is 2.5, 17.6% for OMES when o is 1.7 and 1.13% for PSICOV when a is
11.2. (B) Stacked bar plots showing the number of MSAs for which including codon data
improved the contact predictions using the different methods (orange) and the number of
those for which it was otherwise (green). The statistical significance of the improvement
achieved by incorporating codon data is indicated by the top and bottom P-values obtained
using the Wilcoxon signed-rank and sign tests, respectively.
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Figure 2.12 Testing the stability of the value of a by cross-validation.

The MSA data set was divided into 10,000 different learning and test sets of equal size.
The value of awhich produces the maximal median percent of AUC improvement in
accuracy of contact prediction was obtained for each learning set and then used to assess
the median percent of AUC improvement for the corresponding test set. The distributions
of the median percent of improvement obtained for the test sets are shown for OMES, M,
DCA and PSICOV. The mean values of these test sets distributions obtained using the
different methods are similar to those of their learning sets, thus, showing that the
improvement is not due to over-fitting. In the case of OMES, MI and DCA, the mean
difference between the values of a which maximizes the median of the percent of AUC
improvement for the learning and test sets equals zero, thus, reflecting the stability of the
values of a. In the case of PSICOV, the variance of that difference is high due to the
asymptotic nature of the median percent of AUC improvement as a function of a.



2.3.4 Performance analysis for different contact definitions

The better success of DCA and other methods in identifying contacts according to the Cg-
based definition when amino acid and codon data are combined is an important result since
as stated earlier, more pairs that are in true physical contact are identified in this way.
Nevertheless, my finding that the Cg-based definition of contacts is better than the ‘All’
definition but still poor (only 30% of the pairs defined as being in contact are in physical
contact) prompted me to test the performance of our method for additional contact
definitions. The mean of the extent of improvement in contact prediction for 114 domains
(or 86 in the case of PSICOV) was, therefore, determined as a function of the distance that
must exist between at least two Cp atoms in different residues in order for them to be
defined as being in contact. It may be seen that, in the cases of PSICOV, OMES and DCA,
the maximum improvements in contact prediction upon combining amino acid and codon
data are when these distances are about 5.5, 7 and 5.5 A, respectively, and that, in the cases
of DCA and OMES, the improvement decreases dramatically when this distance is >~10
A (Figure 2.13). In the case of MI, the extent of improvement upon combining amino acid
and codon data is found to be relatively insensitive to the distance used to define a contact
and is maximal when it is ~4.5 A (Figure 2.13). These data, therefore, show again that the
improvement in contact prediction upon combining amino acid and codon data is greatest
when the distance used for contact definition does not lead to many pairs being defined in

contact when in fact they are not in direct physical contact.
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Figure 2.13 Improvement in contact prediction as a function of the distance used to
define a physical contact.

The mean of the extent of improvement in contact prediction for 114 domains (or 86 in the
case of PSICQV) is plotted as a function of the distance that must exist between two Cg
atoms in different residues in order for them to be defined as being in contact. The extent
of improvement was determined by calculating the difference in the areas under the curves
of prediction accuracy vs. number of predictions by OMES, MI, DCA and PSICOV with
and without incorporation of the codon data normalized by the area under the curve
generated without codon data. The analysis was done for domains of length between 200
and 500 residues and at least 2000 coding sequences in their MSA. The contact predictions
were made for the seven sequences with available crystal structures that have the highest
resolution and that in all cases is <3 A.

2.3.5 lllustrative examples

The added value in combining amino acid and codon data can be illustrated for contact
prediction by DCA in the case of Kex1Ap, a prohormone-processing carboxypeptidase
from Saccharomyces cerevisiae that lacks the acidic domain and membrane-spanning

portion of Kex1p. The crystal structure of Kex1Ap was solved at a resolution of 2.4 A
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(Shilton et al., 1997)and its MSA consists of
1,877 sequences. The predictions by DCA
with or without incorporating codon data are
shown in the respective top and bottom
halves of the Kex1Ap contact map (Figure
2.14A). A comparison of the predictions by
the two approaches shows that those made
with incorporation of codon data are more
long-range (in sequence) and more spread
throughout the protein structure than those
made without incorporation of codon data.
Examples for such long-range contacts
between different secondary structure
elements in Kex1Ap that are predicted only
when also the codon data is used include the
interactions between Thr148 with Phel85,
Alal86 with Leu208 and Leul90 with
Leu368 (Figure 2.14B). This and other
2.15) that

incorporation of codon data can yield

examples  (Figure show

predictions of contacts between residues that
are distant in sequence and are, thus, of more

value for structure prediction.

Figure 2.14 Added value of combining
amino acid and codon data in contact
prediction by DCA illustrated for
Kex1Ap.

A prohormone-processing carboxypeptidase
from S. cerevisiae. (A) Contact map of the
structure of Kex1Ap(PDB ID: 1AC5) in
which all the contacts are shown as gray
rectangles. Residues were defined as being
in contact if at least one inter-atomic
distance between their Cg atoms (C, for
glycine) is < 8 A. The top 100 predicted
contacts made with or without incorporating



codon data are highlighted above (in red) and below (in green) the diagonal, respectively,
and those predicted by both methods by black circles. (B) The crystal structure of Kex1Ap
with predicted contacts highlighted. Only true predicted contacts that were not predicted
by the original method are highlighted. Each contacting pair has a different color. The
contacts were predicted using an MSA with 1,877 coding sequences with a length of 415
codons.
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Figure 2.15 Illustration for four proteins of added value of combining amino acid
and codon data in contact prediction by DCA.

All the contacts are shown as gray rectangles. Residues were defined as being in contact
if at least one inter-atomic distance between their Cg atoms (C, for glycine) is <8 A. The
top 100 predicted contacts made with or without incorporating codon data are highlighted
above (in red) and below (in green) the diagonal, respectively, and those predicted by both
methods by black circles. 1BAG_A - contact map of the structure of alpha-amylase from
Bacillus subtilis (Pfam id: PF00128).1263 A - contact map of the structure of
Sulfolobussolfataricus SWI2/SNF2 ATPase core (Pfam id: PF00176). 1AQU_A - contact
map of the structure of mouse estrogen sulphotransferase (Pfam id: PF00685). 1IGW6_A -
contact map of the structure of human leukotriene A4 hydrolase (Pfam id: PF01433).



2.3.6 The potential value of codon information in other applications

The improvement in contact prediction when incorporating codon information in the
analysis raised the question whether other applications in bioinformatics can benefit from
it. An interesting application that also uses amino acid information in the form of an MSA
is predicting whether a single nucleotide polymorphism (SNPs) is deleterious or non-
deleterious. One example for such a method that was reported to perform well is Polyphen-
2 (Adzhubei et al., 2013, 2010). This method is based on a machine learning approach that
includes in its model a large number of features comprising phylogenetic and structural
information characterizing the substitution., Here, | tested whether a much simpler model,
based only on amino acid and codon MSA data, would be adequate. Thus, by using the
same learning and test sets used in the development of the Polyphen-2 method (HumDiv
and HumVar, see details in the methods section), we were able to demonstrate that
incorporation of codon information in the prediction model significantly improves the
performance of the predictions (Figures 2.16 and 2.17). The performance on the HumDiv
test set was improved from an AUC of the receiver operating characteristic (ROC) curve
with a value of 0.69 (based on amino acid MSAs only) to an AUC value of 0.75 (based on
a model which combines both amino acids and codon information). The same trend is
observed for the HumVar database (Figures 2.16 and 2.17).
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Figure 2.16 Performance evaluations of four different deleterious SNP predictors
based on the HumDiv dataset.

ROC curves are plotted based on 2-fold cross validation. See methods below for details of
the features. An additional independent variable incorporated into the prediction model
was the type of mutation designated in the figure legend as “change”.
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Figure 2.17 Performance evaluations of four different deleterious SNP predictors
based on the HumVar dataset.

ROC curves are plotted based on 2-fold cross validation. See methods below for details of
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In the correlated mutations analysis, the amino acid and codon based scores had an opposite
effects on the likelihood that a pair will have a physical contact. The same effect is observed
when fitting a logistic regression model to the SNPs’ data sets described above. Here, the
coefficients of the codon and amino acid entropies have opposite signs as follows:

The fitted model based on HumDiv:
1

F(X) = 1+ e—(—0.56+1.84H(AA)—0.85H(Codon)+0.17H(AA)H(Codon)

The fitted model based on HumVar:
1

F(x) = 1 4+ ¢—(~1.06+1.35H(4A)—0.51H(Codon)+0.15H(AA)H (Codon)

where H is the entropy calculation for a SNP site in the MSA.



2.4 Summary

| have shown that improved contact prediction can be achieved by analysing both amino
acid and codon MSAs together. The premise of my approach is that direct contacts are
more likely to be present if the correlation at the amino acid level is high but at the codon
level is low. Of particular importance, I find many cases where contacts between residues
that are distant in sequence and, thus, of greatest value for structure prediction, are
predicted only by using the combined method. It will be interesting to see whether our
method succeeds better than other methods in contact prediction for a specific group of
cases such as long proteins, long range interactions, inter-chain interactions and more.
With regards to other applications with which codon and amino acid information
can be combined, | have shown that the prediction of deleterious SNPs can be improved
using both codon and amino acid information. Interestingly, the opposite relations between
amino acid and codon data also appeared in the regression model for the damaging SNP

detection; a result that emphasizes the generality of my approach.

2.5 Discussion

2.5.1 False signals from phylogenetic bias and mRNA structures

High correlation at the codon level can be a consequence of a phylogenetic bias, a signal
that results from functionally related clusters of residues that co-evolve according to the
structure of the underlying tree. In such cases, the driving force for co-variations are at the
codon level and the resulting correlations at the amino acid level do not reflect a true
physical contact. Alternatively, when the main factors are direct physical contacts, the
effect will be at the amino acid level, and as long as the variations at the codon level remain
synonymous, their impact will be negligible. This will result in a high correlation value at
the amino acid level and low correlation at the codon level.

Another factor that can influence the correlation values at the codon level, is the formation
of MRNA secondary and tertiary structures (Katz and Burge, 2003). mRNA structures are
widespread around coding regions (Mortimer et al., 2014; Wan et al., 2014) and in some
cases are linked to translational regulation (Katz and Burge, 2003). In these cases,
synonymous mutations can have a direct effect on the mRNA structure. One example for
such a scenario is when a stable secondary structure protects the mRNA sequence from

degradation. In this situation base pairing preservation in stem regions requires the



selection of nucleotides at synonymous sites (Katz and Burge, 2003). As a consequence,
the correlation values at the codon level will be high and the correlation at the amino acid
level will not reflect a true inter-residue contact. Therefore, a combined score as described
here will detect that it is not a true contact. Another example concerns ribosome pausing
and translation efficiency. The rate of translation in many proteins, which can greatly vary
across transcripts, influences the protein folding pathway (Komar, 2009; Shah et al., 2013;
Wolin and Walter, 1988). RNA structures can have a profound effect on translation rates,
since a highly structured RNA region can cause ribosome pausing, which may facilitate
the folding of individual domains (Figure 2.18) (Dana and Tuller, 2012; Meyer and Miklos,
2005; Wen et al., 2008). The above two factors, phylogenetic bias and mMRNA secondary
and tertiary structure formation, are important sources of false signals that might be
detected at the codon level, and when explicitly combined with the amino acid information,

can significantly reduce false positive contact predictions.
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Figure 2.18 Structure around start codons and translational efficiency.
(a) Accessibility of the 5 untranslated region (UTR) increases translation rate due to
decreased structure in this region that allows efficient ribosome binding and start codon
scanning. (b) The RNA folding energy of different segments of the coding region is
associated with protein structure. The increased structure of these regions promotes
ribosome pausing and assists in protein domain folding. The protein domains shown are

Protein Data Bank identifiers 2GOL and 1A43. SHAPE, selective 2"-hydroxyl acylation

analysed by primer extension. The figure and caption is taken from previous work of others
(Mortimer et al., 2014).



2.5.2 Extensions and future work

The score | propose can be used in conjunction with different methods of CMA; however,
other possible scores or model refinements should be examined in future work. For
example, a refinement of the combined score in this thesis could be done with additional
data sources such as ribosome profiling, RNA secondary structure predictions, and more.

As discussed earlier, the incorporation of codon information in contact prediction
involves dividing the amino acid based score (generated by the CMA) by the codon based
score. Therefore, two amino acids are more likely to be predicted in contact if their amino
acid based score is high and their codon based score is low. Interestingly, in the regression
model fitted for the deleterious SNP prediction, the predictors, i.e. the conservation scores
based on the amino acid and the codon information also have opposite effects on the odds
that a SNP will be damaging. This similarity in the relationship between codon and amino
acid based scores in these two examples suggests that incorporation of codon information

may have a wide range of applications.

With regards to the regularization of a codon covariance matrix (pseudo-count
weights of codons), it might be that additional optimizations could be done, as with regards
to the underlying dependencies in the codon table.

The potential of other applications which combine amino acid and codon MSAs as
part of their analysis should be tested, such as predicting protein-protein interactions

and, more generally, in feature selection in machine learning.



Chapter 3
A Mechanism for Prevention
of Aggregation of
Neighboring Domains

3.1 Introduction

Protein domains play a major role in evolution and are occasionally referred to as the
building blocks of proteins. The term “domain” has been employed in different ways over
the years. Here, it is defined as an evolutionary unit whose coding sequence (typically
corresponding to 100-250 residues) can be duplicated or undergo recombination (Chothia et
al., 2003). In addition, domains usually have an independent function either alone or with
other domains (Vogel et al., 2004) and a compact structure that folds independently (Figure
3.1). Nearly half of all proteomes and more than 70% of all eukaryotic proteins are multi-
domain proteins. About 95% of multidomain proteins contain 2—5 domains and their
combinations follow a power law distribution, i.e, a small number of domains recombine
with many different partners whereas most domains are found only in combination with a

few other partner domains (Han et al., 2007).
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Figure 3.1 The role of domains as building blocks of proteins.

Domains form different multi-domain proteins by duplication and recombination. Domains
belonging to the same superfamily are represented as rectangles in the same color. Various
domain combinations in a certain order (that is, supradomains) can form functional units
that are reused in different protein contexts. This figure is taken from previous work of
others (Vogel et al., 2004).
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In general, domains are classified into families based on sequence, structure or function. The
expansion of the PDB in the mid-90’s, inspired the development of several protein domain
classifications (Mizuguchi et al., 1998; Murzin et al., 1995; Orengo et al., 1997; Siddiqui et
al., 2001) that are hierarchical. For instance, in a protein domain classification database
called CATH, structures are first divided into their constituent domains and then classified
at four major levels: (C)lass, (A)rchitecture, (T)opology or fold, and (H)omologous
superfamily. SCOP, another domain classification database, employs similar categories
(fold, superfamily, family and domain) with some differences in the classification process

(Cuff et al., 2009) (Figure 3.2).
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Figure 3.2 Hierarchal classification of protein domain families.
This figure is taken from previous work of others (Han et al., 2007).

The 3D structures of most proteins are not known and, therefore, using the structure-based
assignment of a domain as described above (SCOP or CATH) is not possible and an
alternative sequence-based domain definition is required. Pfam, the widely used database of
protein families, (Finn et al., 2014; Punta et al., 2012) is a comprehensive source for domain
families which is based on sequence alone. In this database, families are sets of regions in
proteins that share a significant degree of sequence similarity (i.e. homologous sequences).
A multiple sequence alignment (MSA) of each family of homologous sequences can be
formed and turned into a position-specific scoring system based on a profile hidden Markov
model (HMM). Then, the profile HMM, one for each protein family, can be used for

searching sequence databases (e.g. UniprotKB) for remotely homologous sequences (Eddy,
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1998). Similarities between sequences in Pfam are detected using HMMER3 software tool.
Despite the fundamental difference between sequence-based and structure-based domain
family databases, many of the former (that is, Pfam families) can be related to the latter (that
is, SCOP families) (Pandit et al., 2002). Nevertheless, a significant difference in domain
definitions between Pfam and SCOP and CATH is due to discontinuous domains (a
discontinuous domain is one where the linear sequence of the domain is interrupted by
another inserted domain) (Bateman et al., 2004). In this thesis, multidomain proteins are
considered using both the sequence-based Pfam definition described above and the SCOP or
CATH structural definitions (only consecutive domains are taken into account), depending
on the type of analysis.

Multi-domain proteins are potentially more aggregation-prone owing to the high
effective protein concentration near each domain (Han et al., 2007). Aggregation of
misfolded proteins is associated with many diseases such as Alzheimer’s disease and type
I diabetes (Luheshi and Dobson, 2009; Selkoe, 2003). Protein misfolding is also harmful
to cells owing to the energetic costs involved in the synthesis and degradation of non-
functional proteins and the lack of folded protein molecules that may have essential
functional roles (Figure 3.3). Hence, it is not surprising that evidence for strong selection
against misfolding has been found in all kingdoms of life (Dill et al., 2011; Drummond and
Wilke, 2008). Previous work has shown that selection against mis-folding is reflected in
various correlations between measures of protein abundance and the probability of
generating mis-folded proteins upon translation and folding (Drummond and Wilke, 2008;
Tartaglia and Vendruscolo, 2009). For example, it has been suggested that the observed
correlation between protein abundance and optimal codon usage reflects selection against
mis-folding (Drummond and Wilke, 2008). A similar explanation has been offered for the
inverse correlation between mRNA expression levels and predicted protein aggregation
propensities (Tartaglia and Vendruscolo, 2009). Preventing aggregation is particularly
significant in the case of multi-domain proteins since as stated earlier, they account for
nearly half of all proteomes (and more than 70% of all eukaryotic proteins) and are
potentially more aggregation-prone owing to the high effective protein concentration near
each domain (Han et al., 2007). Mechanisms for preventing multidomain proteins from
mis-folding are not yet fully understood (Borgia et al., 2011). One likely mechanism is cO-
translational folding that can help to prevent aggregation of a newly synthesized domain
with other domains in the same polypeptide chain that were synthesized first (Netzer and

Hartl, 1997). Domain-by-domain folding can also be facilitated by controlled domain-by-



domain release from chaperones (Jacob et al., 2007; Rivenzon-Segal et al., 2005).
Aggregation (not just of multi-domain proteins) can also be prevented by increasing
folding rates and decreasing unfolding rates (Batey et al., 2006; Oberhauser et al., 1999) .
Finally, it has been suggested that aggregation of multi-domain proteins is also minimized
by selection for neighboring domains with low sequence identity (Wright et al., 2005).. In

this thesis, I suggest a previously unrecognized mechanism for preventing aggregation

which is based on protein length.
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Figure 3.3 Protein life time from synthesis to degradation.

The figure describes the proteostasis network which integrates pathways for the folding of
newly synthesized proteins, refolding of misfolded states and disaggregation with protein
degradation mediated by the ubiquitin-proteasome system and the autophagy system. This
figure is taken from previous work of others (Hartl et al., 2011).

Many properties of proteins depend on their chain length (Dill et al., 2011;
Thirumalai et al., 2010). Protein folding rates, for example, are known to be inversely
correlated with chain length. I found that there is a very significant tendency for N-terminal
domains in double-domain proteins to be shorter than their neighboring C-terminal
domains. A possible explanation for this observation, given the negative correlation
between folding rates and protein length (Galzitskaya et al., 2003; Thirumalai et al., 2010),

is that there is selection for N-terminal domains to fold faster than their C-terminal
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counterparts. In addition to protein length, folding rates have also been found to be
inversely correlated with absolute contact order (ACO), i.e. the average separation in
sequence between residues that are in contact in the folded structure (Galzitskaya et al.,
2003; Plaxco et al., 1998). Independent support for the existence of selection for faster
folding N-terminal domains is, therefore, provided here by showing that the ACO values
of N-terminal domains in two-domain proteins with available three-dimensional structures
tend to be lower than those of their respective C-terminal neighbors. I, therefore, reasoned
that if the bias for two-domain proteins with a faster folding N-terminal domain is due to
selection against protein mis-folding then proteins with a shorter N-terminal domain should
be more abundant than those with a shorter C-terminal domain as indeed I found to be the
case. Taken together, the findings presented in this thesis suggest the existence of a
previously unrecognized mechanism for prevention of aggregation of neighboring

domains.

3.2 Methods

3.2.1 Construction of datasets of two-domain proteins

Pfam (Finn et al., 2014) domains sequence assignments (release 26.0) from Swissprot were

downloaded from ftp:/ftp.sanger.ac.uk/pub/databases/Pfam/current_release/. Only protein

sequences that were assigned two consecutive Pfam domains (each formed by a continuous
sequence of 50 to 200 amino acids and connected by a linker that is shorter than 30 amino
acids) with no additional nested or overlapping domain assignments were included in the
database. This dataset comprises 32,567 proteins from 3,995 different organisms.
Evidence for existence at the protein level was taken from SwissProt annotations (UniProt
Consortium, 2012) in the file downloaded from

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/unipr

ot_sprot.fasta.gz and is available for 2,964 of these proteins. A non-redundant set of 6,739

two-domain proteins was created by intersecting our dataset of 32,567 proteins with that
of UniRef (Suzek et al., 2007) that was downloaded from

ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref50/uniref50.fasta.gz ~ using  a

redundancy cutoff of 50%.
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3.2.2 Contact order analysis

Two databases of structural classification of proteins were used in the analysis: (i) version
1.75A of SCOP (Andreeva et al., 2008; Murzin et al., 1995) that was downloaded from
http://scop.berkeley.edu/astral; and (ii) version 3.4 of CATH (Orengo et al., 1997; Pearl,

2003) that was downloaded from http://release.cathdb.info. Only proteins that contain two

domains belonging to the same family (the lowest level in the structural hierarchy as
defined by CATH and SCOP) were included in the analysis. In addition, I considered only
proteins in which the length of each domain is between 50 and 300 residues and where the
combined lengths of the two domains is > 80% of the length of the PDB entry and that the
length of the linker is less than 30 amino acids. In cases where different two-domain
proteins contain the same domain, I required in order to avoid redundancy that the non-
shared domains differ in sequence by at least 5% (using other cutoffs did not alter the
results). This process yielded 454 entries for 174 domain families in SCOP and 1247
entries (808 of which belong to the immunoglobulins) for 92 domain families in CATH.
Data for families with more than one member were included in the analysis using their
average so that large families (e.g. the immunoglobulins) would not be overrepresented.

ACO was calculated as described (Galzitskaya et al., 2003; Plaxco et al., 1998)
using the script downloaded from
http://depts.washington.edu/bakerpg/contact_order/contactOrder.pl (written by Erik Alm).
ACO is the average sequence separation between contacting residues in the native structure
and 1s given by:

1
ACO = =Y jen,i>j ASi j»
where N is the number of contacts in the native structure and DS i is the number of amino

acids between residues 1 and j that are in contact. The relative contact order (RCO) is equal

to ACO/L where L is the length of the protein.

3.2.3 Protein abundance analysis

Protein abundance analysis was carried out using data downloaded from http://pax-db.org

(Wang et al., 2012b), release 2.1, for 1,699 two-domain proteins in the Pfam database from
12 different organisms.. The abundance data is expressed as parts per million (ppm),

i.e. the abundance of each protein is quantified relative to those of all other protein


http://scop.berkeley.edu/astral
http://release.cathdb.info/
http://depts.washington.edu/bakerpg/contact_order/contactOrder.pl
http://pax-db.org/

molecules in the sample. Data for samples from different sources can, therefore, be

compared.

3.3 Results

3.3.1 N-terminal domains in two-domain proteins tend to be shorter than C-
terminal domains

Density plots generated for the chain lengths of N- and C-terminal domains in 2964 two-
domain proteins in the SwissProt database show a clear bias for N-terminal domains to be
shorter than C-terminal domains (Figure 3.4A). It is not possible, however, to determine
from these plots to what extent, if any, the bias is influenced by domain pairing, i.e. the
tendency of the N-terminal domain in two-domain proteins to be shorter than its
neighboring C-terminal domain. We, therefore, decided to compare the bias in the 2964
real two-domain proteins with the biases in 10,000 sets of 2964 randomly chosen domain
pairs generated by shuffling the N-terminal domains of the real proteins while keeping the
C-terminal domains in place. A histogram of these biases shows that the bias in the real
two-domain proteins is significantly larger than in any of the sets of randomly generated
domain pairs (Figure 3.4B). This analysis shows that the domain pairing in real proteins
increases the bias much beyond what is expected given that, in general, N-terminal domains
tend to be shorter than C-terminal domains (Figure 3.4A). In other words, there appears to
be selective pressure for N-terminal domains in double-domain proteins to be shorter than

their C-terminal counterparts.
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Figure 3.4 Distribution of chain lengths of N- and C-terminal domains in two-domain
proteins.

(A) Density plots of the chain length distributions of N- (purple) and C-terminal (turquoise)
domains in double-domain proteins shows that the tendency for C-terminal domains to be
longer is significant with a Wilcoxon rank sum test (two sided) P-value of 8.3x10®. The
analysis is based on 2964 two-domain proteins in the SwissProt database that (i) comprise
domains of length between 50 to 200 amino acids connected by a linker that is shorter than
30 amino acids and (ii) for which there is evidence at the protein level. (B) Histogram
showing the bias for shorter N-rerminal domains in real two-domain proteins and in two-
domain proteins comprising randomly chosen domain pairs generated by shuffling the N-
terminal domains of the real proteins while keeping the C-terminal domains in place. The
bias, which corresponds to the number of proteins with shorter N-terminal domains, nnt<ct,
divided by the the number of proteins with shorter C-terminal domains, Nci<nt, Was
calculated for the 2964 real two-domain proteins (arrow) and for 10,000 sets of 2964
randomly chosen domain pairs (gray bars).

Next, we asked whether the bias seen in Figure 3.4A is general or limited to certain
datasets. The data in Table 3.1 show that the bias is found in both eukaryotic and
prokaryotic proteins. It is also seen when the analysis was carried out for all the Pfam

entries in SwissProt and for the Uniref50 nonredundant prokaryotic, eukaryotic and
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combined datasets. Finally, the bias was also observed in datasets of proteins from very
different organisms such as E. coli and fly. The bias for N-terminal domains in two-domain
proteins to be shorter than their C-terminal counterparts is, therefore, found to be

ubiquitous but is stronger in prokaryotic proteins.

Protein Data Set Nnit<ct Nce<nt Nnit<ct/Nct<nt
All proteins for which there is evidence at protein level | 1,757 1,116 1.57
All eukaryotic proteins for which there is evidence at 1,139 739 1.54
protein level

All prokaryotic proteins for which there is evidence at | 521 311 1.68
protein level

All Pfam entries in Swiss-Prot 18,763 13,198 1.42
UniRef50 nonredundant set of proteins 3,747 2,871 1.31
UniRef50 nonredundant set of eukaryotic proteins 1,220 1,016 1.20
UniRef50 nonredundant set of prokaryotic proteins 2,148 1,599 1.34
Representative Organisms

Human (H. sapiens) 339 309 1.10
Mouse (M. musculus) 298 280 1.06
Arabidopsis thaliana 327 193 1.69
Yeast (S. cerevisiae) 111 98 1.13
Escherichia coli 166 100 1.66
Fly (D. melanogaster) 54 34 1.59
Worm (C. elegans) 78 59 1.32
Methanocaldococcus jannaschii 59 37 1.59

Table 3.1 Number of Two-Domain Proteins with Shorter N- or C-Terminal Domains
in Different Protein Data Sets.

The table is based on proteins in Swiss-Prot with two domains of length between 50 and
200 amino acids connected by a linker that is less than 30 amino acids. Proteins with
additional nested or overlapping Pfam domain indications were excluded.

3.3.2 N-terminal domains in two-domain proteins are predicted to fold
faster than C-terminal domains

The inverse dependence between folding rate and chain length (Galzitskaya et al., 2003;
Thirumalai et al., 2010) suggests that N-terminal domains in double-domain proteins are
selected to be shorter than their C-terminal counterparts so that they fold faster. Given that
the detailed folding kinetics of most proteins are not known, we decided to test this idea
using ACO as a predictor of the relative folding rates of the individual domains in double-
domain proteins. We restricted our analysis to two-domain proteins with known structure
in which both domains belong to the same family (as defined by the CATH (Orengo et al.,
1997) and SCOP (Murzin et al., 1995) databases) so that the strong dependence of ACO
and chain length on topology would not mask a signal that arises from the domain order.

The analysis was carried out using both CATH and SCOP in order to ensure that the ACO
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values that are calculated separately for each domain do not depend on the choice of
domain boundaries that may differ in the two databases. We also required that each domain
is formed by a continuous sequence of 50 to 300 residues and is, thus, in the range where
ACO and chain length were shown to have predictive value. Finally, we only considered
two-domain proteins in which the combined lengths of the two domains is >80% of the
length of the full protein and the linker connecting the two domains is less than 30 amino
acids. Data for families with more than one member were included in the analysis using
their average so that large families would not be overrepresented.

A significant tendency is observed for the ACO values of the N-terminal domains
in two-domain proteins (satisfying the criteria described above) to be smaller than those of
their neighboring C-terminal domains (Figure 3.5). The values of the ratio between the
number of all two-domain proteins in SCOP and CATH with a predicted faster folding N-
terminal domain and the number of all those with a predicted faster folding C-terminal
domain (nacont<acoct/nacocy<acony) are 1.4 and 1.7, respectively, with respective
binomial test P-values of 0.04 and 0.016. This tendency is observed for all domain classes
(o, B, o/fp and ot+Pf) in both SCOP and CATH. The wvalues of
NACONH)<ACO(Ct/NACOCt<aconNt are 1.7, 1.5 and 1.8 for the 19, 28 and 44 respective members
of the a, B, o/B and a+p classes in CATH and 1.8, 1.3 and 1.4 for the 31, 46 and 88
members of these classes in SCOP. Importantly, the bias for ACO values of the N-terminal
domains in two-domain proteins to be smaller than those of their neighboring C-terminal
domains is not due to differences in domain lengths as it is observed also for proteins with
domains of similar size (Table 3.2). For example, the values of the ratio
NACON<ACO(Ct/NAaco(cy<acony) for all the two-domain proteins in CATH and SCOP, when
those with a difference of more than ten amino acids in their domain lengths were excluded
from the analysis, are 1.6 and 1.4, respectively. The corresponding P-values of 0.053 and
0.078 are, however, somewhat higher owing to the smaller sizes of the datasets when only
two-domain proteins comprising domains with similar lengths are considered. We also
calculated Fisher exact test of independence P-values to determine to what extent ACO
values contain information beyond that which is provided by domain length. The
respective Fisher exact test P-values of 0.32 and 0.798 for the case above indicate that the

bias in ACO values is not due to differences in domain lengths (Table 3.2).
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Figure 3.5 Distribution of the differences in absolute contact order (ACO) values of

the N- and C-terminal domains in proteins with two domains that belong to the same

family.

(A) Two-domain proteins in SCOP, (B) two-domain proteins in CATH, (C) two-domain
eukaryotic proteins in CATH, and (D) two-domain prokaryotic proteins in CATH. The
proteins were binned so that the frequency of two-domain proteins with a positive value of
AACO (i.e. ACOnt< ACOc) in a certain range can be compared with the frequency of
two-domain proteins with a negative value of AACO (i.e. ACOnt > ACOct) in the same
range of absolute values. The frequency of two-domain proteins with a positive value of
AACO in a certain range is nearly always found to be greater than the frequency of two-
domain proteins with a negative value of AACO in the same range of absolute values. In
the SCOP database (A), there are 101 and 73 proteins for which ACOnt < ACOct and
ACOnt > ACOcg, respectively (binomial two-sided test P-value of 0.04). In the CATH
database (B), there are 58 such proteins for which the ACO value of the N-terminal domain
is smaller than that of its neighbouring C-terminal domain (ACOnt < ACOct) and 34
proteins for which ACOnt > ACOct (binomial two-sided test P-value of 0.02). Such a
tendency is observed for all thresholds of non-redundancy analyzed in SCOP and CATH.

In the case of relative contact order (RCO) calculations (see Methods) for two-domain
proteins with a difference of less than ten amino acids in their domain lengths, the values
of the ratio nrconi<rcocy/NrRcocy<rcomy) for the two-domain proteins in CATH and SCOP

are, as expected, similar to the corresponding values of nacony<aco(cy/nacocy<acont but
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the dependence of the bias on domain length is greater as reflected in the respective Fisher
exact test P-values of 0.1 and 0.077 (Table 3.2). In summary, therefore, two predictors of
folding rate, domain length and ACO, indicate independently of each other that N-terminal
domains in two-domain protein tend to fold faster than their neighboring C-terminal
domains. The bias for positive values of AACO is found to be significantly greater in the

two-domain proteins in CATH from prokaryotes (D) than in those from eukaryotes (C).

See Figure 6 for additional data.

SCOP
ACO RCO
Maximum | NACONH)<ACO(C Fisher Binomial | nrcomi<rco(cy) Fisher Binomial
difference | y/naco(cy<aco | exact test test P- | /nrco(cy<rcoN | exact test test P-
between (NY) P-value value t) P-value value
domain
lengths
10 62/43 0.32 0.078 63/42 0.1 0.05
15 72/47 0.13 0.027 75/44 0.12 0.005
20 75/53 0.046 0.063 77/51 0.13 0.026
30 86/59 0.005 0.030 82/63 0.16 0.134
40 90/65 0.005 0.053 88/67 0.046 0.107
50 90/69 0.009 0.112 88/71 0.03 0.204
CATH
ACO RCO
Maximum | NACONH<ACO(C Fisher Binomial | nrcont<rco(cy) Fisher Binomial
difference | y/nacocn<aco | exact test test P- | /nrco(cy<rcoy | exact test test P-
between (N©) P-value value f) P-value value
domain
lengths
10 43/26 0.798 0.053 41/28 0.077 0.148
15 41/33 0.228 0.41 46/28 0.08 0.047
20 45/34 0.360 0.26 48/31 0.03 0.071
30 46/35 0.103 0.266 44/37 0.011 0.505
40 54/35 0.069 0.055 48/41 0.001 0.525
50 56/33 0.039 0.019 48/41 0.004 0.525

Table 3.2 Summary of statistics for the relative (RCO) and absolute (ACO) contact
order values for two-domain proteins in which the difference in the lengths of the N-
and C-terminal domains is restricted?.

8Fisher exact test is used to calculate the likelihood that a bias in ACO or RCO values is
independent of domain length (i.e. P > 0.05 indicates that the two measurements are
independent). The probability of the indicated bias to happen by chance is calculated using
the binomial two-sided test.



3.3.3 Bias for faster folding N-terminal domains is greater in prokaryotes
than in eukaryotes

The tendency for N-terminal domains to be predicted as faster folders than their C-terminal
neighboring domains is found to be greater in prokaryotes than in eukaryotes (Figures
3.5C,D and 3.6). In 28 families in CATH that comprise prokaryotic proteins, the ACO
values of the N-terminal domains are smaller than those of their respective C-terminal
neighboring domains whereas only in 13 families the opposite is found (binomial two-
sided test P-value of 0.03). In eukaryotic families, the ACO values of the N-terminal
terminals are smaller than those of the neighboring C-terminal domains in 32 families in
CATH whereas in 24 families the opposite is seen and while the trend is, therefore,
maintained it is not significant statistically (binomial two-sided test P-value of 0.35). This
difference between prokaryotes and eukaryotes is also seen in the two-domain proteins in
SCOP (Figure 3.6). The bias for N-terminal domains in two-domain proteins to be shorter
than their C-terminal counterparts was also found to be stronger in prokaryotic proteins
(Table 3.1). Taken together, therefore, the data indicate that selection for N-terminal
domains to fold faster than their C-terminal neighboring domains is much stronger in

prokaryotes than in eukaryotes.
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Figure 3.6 Distribution of the differences in absolute contact order (ACO) values of
the N- and C-terminal domains in two-domain proteins in SCOP that belong to the
same family in prokaryotes (A) versus eukaryotes (B).
The frequency of two-domain proteins with a positive value of AACO (i.e. ACOnt <
ACOc) in a certain range is compared with the frequency of two-domain proteins with a
negative value of AACO (i.e. ACOnt > ACOcy) in the same range of absolute values. The
frequency of two-domain proteins with a positive value of AACO is found to be
significantly greater than the frequency of two-domain proteins with a negative value of
AACO in prokaryotes than in eukaryotes.
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3.3.4 Two-domain proteins with an N-terminal domain that is shorter than
its neighboring C-terminal domain are more abundant

Given that proteins with a propensity to mis-fold tend to be less abundant (Drummond and
Wilke, 2008; Tartaglia and Vendruscolo, 2009), we reasoned that two-domain proteins
with a shorter N-terminal domain should be more abundant than those with a shorter C-
terminal domain if this bias reflects selection against mis-folding. Surprisingly, the overall
lengths of two-domain proteins with a shorter N-terminal domain tend to be less than those
of two-domain proteins with a shorter C-terminal domain (Figure 3.7). We decided,
therefore, to compare the abundances of two-domain proteins with different domain
lengths but with a similar overall chain length. Strikingly, we find that two-domain
proteins with an N-terminal domain that is shorter than the C-terminal domain are more
abundant than two-domain proteins with similar overall chain length but with shorter C-
terminal domains (Figure 3.8). This tendency is also seen for each of the individual species
in the dataset (see Methods), when the data for the different species, which include both
prokaryotic and eukaryotic model organisms such as E. coli, S. cerevisiae and H. sapiens,
are analyzed separately (not shown). Furthermore, when the analysis is restricted to two-
domain proteins with a linker that is ten or less amino acids long (Figure 3.9), this trend
becomes more pronounced as might be expected since a short linker length can increase
the probability of mis-folding or aggregation (e.g. (Arndt et al., 1998). Finally, we also
found that three-domain proteins in which the N-terminal domain is appreciably shorter (>
ten amino acids) than the middle domain which, in turn, is appreciably shorter than the C-
terminal domain are more abundant compared to triple-domain proteins with the other five
possible rank orders of domain sizes (data not shown). We do not find, however, that
triple-domains with any particular rank order of domain lengths are more abundant but the
analysis of proteins with more than two domains is restricted by less available data on the

one hand and more potential rank orders on the other hand.
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Figure 3.7 Chain length distributions of two-domain proteins with shorter N- or C-
terminal domains.

Density plots of the overall length of two-domain proteins with shorter N- (purple) or C-
terminal (turquoise) domains show that the tendency for those with shorter N-terminal
domains to have a shorter overall length is significant with a Wilcoxon rank sum test (two
sided) P-value of 2.5x10!. The mean values of the overall length of the two-domain
proteins with shorter N- or C-terminal domains are 298 and 329 residues, respectively. The
analysis is based on 1,699 two-domain proteins.



E

§ 2500
3

S 2000 |
3

S 1500
C

c 1000
£

S 500
Q.

C

S 0
= 100 200 300 400 500 600

Protein length

Figure 3.8 Comparison between the mean abundances of two-domain proteins of
similar overall chain length with either a shorter N-terminal domain or with a
shorter C-terminal domain.

The two-domain proteins were binned according to their overall length (bin width is set
here to 25 amino acids) (see Figure 3.7) and the average abundances of all the proteins with
either a shorter N-terminal domain (purple) or with shorter C-terminal domain (turquoise)
in each bin were calculated separately. The analysis was carried out using abundance data
downloaded from http://pax-db.org for 1,699 two-domain proteins (with length between
50-200 amino acids and a linker shorter than 30 amino acids) in the Pfam database from
12 different organisms. The mean abundances of all the two-domain proteins with a shorter
N-terminal domain or with a shorter C-terminal domain are 590.53 and 229.75 ppm,
respectively. The difference between the binned data for the two groups was found to be
significant (P-value = 0.01) using the Wilcoxon rank sum paired test (two sided). For
additional data and analyses, see Figures 3.9 and 3.10.
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Figure 3.9 Comparison between the mean abundances of two-domain proteins of
similar overall chain length with shorter N- (purple) or C-terminal (turquoise)
domains that are connected by a linker of ten residues or less.

The analysis was carried out for 825 two-domain proteins as described in the legend to
Figure. 3.8. The mean abundances of all the two-domain proteins with a shorter N-terminal
domain or with a shorter C-terminal domain are 995.30 and 224.30 ppm, respectively. The
difference between the binned data for the two groups was found to be significant (P-value
<3x107°) using the Wilcoxon rank sum paired test (two sided).

3.3.5 Higher abundance of proteins with shorter N-terminal domains is
much more pronounced for longer proteins

The risk of protein mis-folding as a result of formation of non-native inter-domain
interactions is likely to increase as folding times approach translation times which can be
the case for proteins longer than 150 amino acids (Naganathan and Mufioz, 2005). Hence,
the benefit reflected in protein abundance that is associated with having a shorter N-
terminal domain is expected to increase with protein size. We, therefore, compared the
mean abundances of two-domain proteins with shorter N- or C-terminal domains (Figure
3.10) but with a similar overall chain length that is either less than 150 residues, between
150 and 300 residues or between 300 and 450 residues. In the case of two-domain proteins
shorter than 150 residues, the mean abundance of two-domain proteins with a shorter N-
terminal domain is only marginally higher than that of those with a shorter C-terminal

domain (Figure 3.10). However, in the case of two-domain proteins that are longer than
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150 residues, the mean abundance of those with a shorter N-terminal domain is
significantly higher than that of those with a shorter C-terminal domain (Figure 3.10).
These findings, therefore, suggest that selection for shorter N-terminal domains increases

when the folding and translation times are in the same range.
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Figure 3.10 Comparison between the mean abundances of two-domain proteins with

shorter N-terminal (purple) or C-terminal (turquoise) domains for three ranges of

protein size.

The analysis was carried out for 33, 882 and 574 two-domain proteins with similar overall
chain lengths that are either less than 150 residues, between 151 and 300 residues or
between 301 and 450 residues, respectively. The ratios between the mean abundances of
the proteins with a shorter N-terminal domain and those with a shorter C-terminal domain
are 1.34 (1801.62/1335.67), 2.69 (583.20/216.20) and 3.36 (689.60/204.63) for the three
protein size ranges (in order of increasing size), respectively. The P-values for the
difference in the abundances of the two-domain proteins with shorter N-terminal or C-
terminal domains in each of the three bins were calculated using the Wilcoxon rank sum
paired test (two sided) and are indicated above the respective abundances.

3.3.6 Bias in proteins with more than two domains

Expanding the analysis for proteins with more than two domains is restricted by less
available data on the one hand and more potential rank orders (6 for triple-domains) on
the other hand. We do not find that triple-domains with any particular rank order of
domain sizes are more common. However, we do see that triple-domains in which the

first domain is appreciably shorter (by 10 amino acids) than the second which, in turn, is
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appreciably shorter than the third (designated by 1<2<3) are more abundant compared to
triple-domains with all other five rank orders (see Figure 3.11) with a P-value of 0.00038.

This result supports our conclusions and is mentioned in the revised text.
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Figure 3.11 Abundance distributions for triple-domain proteins in all triple

configurations.
Abundance values are taken from PaxDb.



3.4 Conclusions

This study shows a significant tendency for the N-terminal domains of two-domain
proteins to be shorter than their neighboring C-terminal domains (Figure 3.4 and Table
3.1). I'have also found that the ACO values of N-terminal domains tend to be smaller than
those of their neighboring C-terminal domains (Figure 3.5). Given that both chain length
and ACO are inversely correlated with folding rate, our results suggest that there is a bias
for two-domain proteins in which the N-terminal domain folds faster than its C-terminal
counterpart. In such two-domain proteins, folding of the N-terminal domain is predicted
by the exponential dependence of folding rate on chain length and ACO (Ivankov et al.,
2003; Plaxco et al., 1998) to be 10-14 times faster, on average, than that of the C-terminal
domain. Such a bias in folding rates may reflect selection against mis-folding since
domain-by-domain folding can minimize formation of non-native interdomain
interactions. In addition, folding of an N-terminal domain can catalyse the folding of its
neighboring C-terminal domain as shown for spectrin domains (Batey and Clarke, 2008),
thereby reducing the risk of aggregation. Support for the suggestion that the bias reflects
selection against mis-folding is provided by the observation that two-domain proteins with
a shorter N-terminal domain are more abundant than those with a shorter C-terminal
domain (Figure 3.8) since proteins with a tendency to mis-fold are, in general, less
abundant (Drummond and Wilke, 2008; Tartaglia and Vendruscolo, 2009).

There is increasing evidence that folding of multi-domain proteins takes place co-
translationally in both eukaryotes (Netzer and Hartl, 1997) and prokaryotes (Cabrita et al.,
2010; Nicola et al., 1999). Co-translational folding is potentially more efficient than post-
translational folding as it can facilitate domain-by-domain folding, thereby minimizing
mis-folding owing to formation of non-native interdomain interactions. It has been
suggested that translational pausing owing to the presence of rare codons might allow one
domain to fold before synthesis of the other is completed (Komar, 2009). The data
presented here, based on a survey of a large number of domain families, indicate that
increased efficiency of multi-domain protein folding is often achieved by another
mechanism, i.e. selection for faster folding of N-terminal domains relative to their C-
terminal neighboring domains via fine tuning of their respective structural properties. The
observation that this bias is greater in prokaryotes than in eukaryotes (Figures 3.5C,D and
3.6) is intriguing and may reflect compensation for the absence in prokaryotes of an

extensive chaperone network that interacts with nascent chains (Albanése et al., 2006).



The bias is also expected to be greater when the time-scales of translation and folding are
closer and may, therefore, be more pronounced in prokaryotes since their translation rates
are 5- to 10-fold faster than those of eukaryotes (Liang et al., 2000; Mathews et al., 2007).
This expectation is also consistent with our observation that the tendency for proteins with
shorter N-terminal domains to be more abundant than those with shorter C-terminal

domains is more pronounced for longer proteins.

3.5 Future work

Another possible function for the bias for shorter N-terminal domains vs. their C-terminal
counterparts described here, is structural templating, a process in which a folded domain
facilitates the folding of its C-terminal neighboring domain that is translated
subsequently,(Figure 3.12). A preliminary analysis of a non-redundant set (NR95) from
SCOP (almost 2000 two-domain proteins) reveals more than 100 two-domain proteins
with an observed template-like interface. Future work can extend this data set and continue
in studying this direction in relation to folding rates, folding characteristics (e.g.
intrinsically unfolded proteins and nanny proteins (Tsvetkov et al., 2009)) and structural

density in multi-domain proteins.

In order to prevent aggregation and promote efficient folding under stress and normal
conditions, many cellular resources are invested in a complex network of chaperones
(Figure 3.3) (Albanése et al., 2006; Hartl et al., 2011). The analysis of domain length bias
that was based on more than 1300 complete proteomes from bacteria to human, showed
that the higher the organism the lower is the bias (table 1.1). It is possible that the
development of the chaperone network in higher organisms enabled the evolution of more
multi-domain proteins in those genomes (Albanese et al., 2006), while maintaining
adequately low aggregation rates. This raises the question of identifying the part of that
network that is involved in preventing multi-domain protein aggregation. Another
interesting question is whether two-domain proteins with a strong bias towards shorter N-
terminal residues potential substrates for chaperonins more than other multi-domain

proteins (assuming they can enter the chaperonin cavity)?



Figure 3.12 A possible templating mechanism of the N-terminal domain on its C-
terminal counterpart.

Densely structured N-terminal (light brown) domain serves as a template for its
neighboring C-terminal domain (purple or peach color). Top — PDB code 1vjtA, represents
a hetero two-domain protein with a large interface between its domains. Bottom — PDB
code 2k49A, represents a homo two-domain protein with a large interface between its
domains.
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Abstract in Hebrew - 4'8pn

Nan

TIR MXAN TONN L1955 Mwa PHOOPNRN NIATN DY 71PN INIVNI NNDY NYRIN NIRD MINIIN 989
920 ION DIRNNN DY DMDYN .MYTN MDA MOYOY INM 1997102 PINYY IND MY DNIY VYD
MLV NV DNVYN TONNI .NNMPN NNIN DY TOYTHN NDXANA NPVYN NNMN NN TUN NDNN MOVIYD

65 NNMI2 PN 920 1965 Mva ,ORIDY — dMIYHYN I9IND YINPNN MINAN 0NN OMNIAINT NN
DOWONIA HPNI NYYTH NI T NNPND DMNAON NI NMINYIND TN .0V DMNAYN DY DN
L PTNRYY N0 AWRD 1977 mava nap yMynwnn JoN0N . MIN XIYT M2PYIN 9879 )¥1pa v192),0019
NOVXY? PN, NVIY .MNIX NIT MNP HY <IN DY NNOXNA TTINNNY NONDNN NVIY NP

DMIXAY YINIW N N NYYN ,MINXIN DNY 25 -2 NN TINYNOLY DIDID NWIY NYRIN-TN NN
SYNND DINN MY ,00VNNIX DY HVIAN XD 19010 DY DM 2987 DY RONN

TONN (NITY X)) DYPVINDPNN NN 0D 92y ,2003 NIWA OVININRN DN M DY NYIDINN I
MNP DY 9PN NN DY NDDIN N TINDNOV WTNN NTH NN TNIDNOV HY DDIANN dINIYHYN
SY IN VAN TNV PN NIN I NV MYNNINI NNIN PONN N/ IN XYT DY MISP MDNN
TPNYNOLN HY DIWONN YINOWN NIV MDININ NINDYN ,G0NL . TTH2 0PN NN INNYYL PWNN D)
9270 NN NPIID HY NPNY D) N1 KXY, 0DIYN YANI2 TN NPNINOV DY NN NXIOND NN 97N
MMPND N7Y RONTD .NPNDPI MYMN IPINRD O MYNYNI YTNND NTN NIXT NNV AN Yy DY
NN DY WTND INTN NI DONIDNOV NX NADVNN NVIVIA DY) ,N/IT DY OMNIATN DY NPIPRIVIN
DMWY DIMNX D¥DI0N DIOYOPHNN ,DINNY NXVITN DT 1 NVdwa (ChIP-seq) VD W M TN
D3N OMN DXNIY DMIPNAD DMNAVN MY DIYPYIN — PINYY Y NVP NI — DMNADN DY MIIYPRIVIN
DI NVIYA DXININ RIITN OYOPNII ,NTION DIV ININIY X7ITN DMNIADNN YTIVN .OOWOLPNN INYND
SV TPSPRIVIN NNMP DMINY DIINNX TN PIYNY 112 751,010 19N DIANIN 1IN .WTINN NN
.DMNVINIO DY PINYY YNVPO HY IIIPRIVIN M0 ,N7ITNH DY ININY DINIAONN

NPN INININY MO MOLIY D) PNYAYHI MNTPNN NNYYI NN NMVIY MNNIND DY 712 T2
,MOINSVDMPN MLV NINNAND ,NNTIPN NRNVND DY DINNDYN NNV MDA ,NINTY DML DN
Sy DMLY 0NN PIMI DINN2 MNDNNY ININ 2NN MDD DMNIAON NV D) VDY
DONIAONN MIAN P12 YV DONMN TON DV TPMYNYN NIANINY NN TN NIRNIND) ,0°17 OMNION

NRTIPN NIRNN HY DOYWNN NNYIA NNMAY NINIDNOVY NIDN N Mynwn XonT .(Protein Data Bank)

DY NOPND N9 NN IWUN I NOVOY DVNN YN NRIPIN D) NV DV DTN NVOW NN

TN NNOXT NAY D) 29ON DY MNVIAN MNT DV 22PN NTTH NIVARD , 1M DNV TYNI IpPNNN

SY NP MAT NMND DMNDNN DMNNIN ININNA IV 1991 ,TIN IRNIND 7D VIV IPINI
.D2IYN YANT2 MITAYNN DNV DN MTTN

IWAND D7y DINI 1TON NMIND NIIN 1N DD OMX DN DNIVN TONN 297 YN MIIVSN

TON MIND NP RDNT .D22IYIN) DIXMIN NN NN TNND ON 12PN NN DY) IPNNN NNPD

65 M IWN ,NNTIPN NNNDN DY 760-N NNWI TIY NYRIN DINNIN TON SVW NN N NNKRD DN

mMapya YT 105N ONMN XTON [ NNTIPN NRND DY DNNDYN NNV ,TYNNI .0MIAON 2989
Y989 Y200 NRY N2 VAN OYI¥IN NN DITNITN DX NMIND YTID WM ,NPNNIVN NMINNANIN



DN DN ,NIIVINY DINIDY DI 29X DIMNNIN TN 15925 1995 Mva (NI NIT) DI TOINIPN
WY TPDY ,YTNN VTN 9IN IONYNOV ,079ONN NNV 70NN .2003 NIva NNND NXID TUN SYNND
YNNI MNPNHDD AN 90N 2009 niva ,nwnnn DWY .D%891 99010 YW IDMYN DYTID NNAN 90

2.75E-15 Nt 2nxn 951 2015 mva 10N 0 oINop »oooa 1.35E-13 oYiya »159m0 yuINRdpn
DMIN DY DINNI DY INNA SMYNYN 91T 922,098 MNINNA DXTPNN I0N 1 THN 18D .0YD0a

01N (GEO) D) »voa bv y1nn Mnn ,(PDB) »mMwbwn 1nadnn »an Sv ymnn 2aNn 1D — DINN
.DMNN

,T1)20 IN TPLIVEPNY MDWN YA G872 DININ MY ONIVN TYNR 0NN DX P MINNYD

DN POIDIND MNIAON DY DN NNOHWN DY — NNTIPN NNHNN DY DOWNNN NN 925 WSINN

Multiple sequence ) D>ax N2 TV (Sequence alignment) D¥axA TIdY NI — IR MOLIY .DINY

TONN2 YTHN MNNN IIVINY DXANIN 190N N1HYN DY TTNNNY N7y 1MW 1999w — (alignment
.DNYN

DN YT MNNN D) XMYNWYN DY) DN, DN DY Y1NIN MNNNDA DXTPNN 0N DYT0HN T80
Y DMNYIOUN DNANN VRN NI L(DOTPVINIPN IX VNN MXNIN G¥I IPX N2 YPRNIY) DINN
OV YTNIN MNNRNDA DITHINND MY PRY OVIR 7PN YR YT MNNRN 5110 05wy — (PDB) oomadnn
99011 N2 T DD NN OPNYHYN DNINN 190N 7D NTIIVA N¥N TIY PN NV .DXININ
MY NNAY DNN ,ININRD AN DY IWID NIVN2 DTN TOMN P DT WA DN DN
MNPIY MIAN M2 O) NT HHY5) — 172D 989N DDA DY DMNATN DY NINON MXNY ,NPVNPNINI
.DM25N HY MO

N9 PYNA NYANND MTIY (PITN NTN2 N G MOIONWNI NIINN TWR) NHX N2 NOOW DY \NNONN
7292 NTAYNA DD MYNNNI IMDID NYP NV YN RINNDD MTVAND DY ODIN) ,0PNNN HVI1an
,D9%7 D02 DY DMIAON DY NIMODN NN NTPNNN RN NN PHVN 270 IRV DX WHTNH
V) NNNM NN PNYRIN P92 .0V DPNOPI MNPHN YN DD HY) NPIWN MOLIY MYNNNI
YN NIYN P92 ; ONOY MWV N1X2NY YN MYTN NNIAND NYIN THKD DXANT DY Y10 N0 NYIN
.D2NIT Y2179 DNAONA FPXNN NYIINY MIVIN 1IN



YN P9
NIRY G891 P2 11PNT DY MOOIANN 0NV TONNI N TYUR NIAVN DY OINYILY N)2N MN2)D M2 MLV
D11 DIPNIY NIN — YT 92 DNYY INYIOVN MANNY DXINN DINIADN 87 12D XAID DIMNYN 1IN
;9N DYIPNA .NX2ID DMNYN IMN NN G899 DNYT DN TUN VT INYIOY MAN Oya ©ONAON PN
MO — MNPNMIAN YT HY DMLDVLLD DIMNNI MYHNNYNI T2 NN DY MDD M) MOLOY
IUNOY NIN LTINYNMPA NPV NI MNIND ION MM NMVIY DDA YPYIN .NIYHN DX NND
7PN2PYI NI NN, IMDIN IN NN DY INYII 19N NYAWNT,NIAVNA DNIDN INN PNV NYNINNI
NOIYNN DMV MIPYN DY NINOY NIN DY ,INN INMN DY TPSPRIVINOTVIVN 1P YWY INN INNI 7SOV
DXIN NYY TN 2P DINSNIN PNIATN YNNI NIMIYN DY NNN NMINN NPXVIN D29 OMIPNA D N
PXYPA PNIAON MINN MNTD INIVNY NPIIVOIN MLV INMH ,00IVN TONNA 1D IO WP D
NIASNN DY MWDV MDD NN TIYNY 17 ,TO2 .DINN DMN P2 MIANIN NAPP ND TITD ,NMI)
.1PANY) DX2IPI INANY DINN DNMIN DDA HY 191D

Sy DM1AYNA NN MIMIN P2 DIYP N2DN0 M2 MLV HINMY ,MNINNKN DIV DMWY ToNna
INT) PPNDTO DXMAOYN NN MO NMINYN NMIVIYN ,DMIPNNN 9 PN .1PXDNPA NPXVID NN D1
(1°9%9 TPNDIMN) TINHNAN N3P OYYA DINATN DY DN N2 TdY YSann YR (1 VIVIVY
MPTN : NAN I9IND DYTT9) NN DINND NINT DI P2 DNNHDN MDY NN 0I1D0ID WATIN NATNN 989D
NAMWNN MPTNN 98D MIVNI NTTNII PNATND DINN MY DI P INNINND MSMIN HY DXaNWNN DOYNNN
IN TPVLDLLO MDYN ITO 97y DININTN NON DRNN YYDV .DINND MY P2 MYN ON DY 1NN
L, NONTY) WRIN YIAPI TUNR DNDN G0 1YY M) OXNND TIY OY NIND TV DD MY NOIWWNIY IOV
2NN MN200 WHYY NI NP NP NONYN (NN MAN OXNNND TIY OOy nann 200 Sv 90
25NN Y MwHYn
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R D constraint /_)/'
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i E inference Ho-c
W v contact in 3D
W v

correlated

113393 NP NP Y NIV 191N PATNN G893 WY TNNR NPT YHYa BIINN NN .1 VIVIY
TOVL(DNANRN DNV NIYIY) MWIOVN MINN NN XD WP N2Y NIATNN 87 9IWIHUN
AMMAN NPPVY NPMNA DANIN N TIOYN) TMPNINIAN NAPP DY OIMNIAON NNIWNY
VPN YINN OPITA NIDN DY IIN NN DXAXIN TV DNVN NIV P IMIPXINAND MNYN

Marks et al.,) ©NX 7y DD 712¥2 NWIVY IPNNK INPYI 1T NINN .DINRN DY P2 DY
(2015

NIAONT DOINK NY P2 PO NAPP DAPYN DPNX DOXIPYY DM DNNH 1DTY ,D7a
YY) GMYN MIPNDANR KX NIRIPIIYV ,NNRD .MADN NPIDOIN MDD SNWN N 01O
WP ROD OINRD PA NVNONPN NN NINY SOMDAN YN MIN DY NIRNIN XD ,INPHIDNAN
OV NNNIN NN, DINNRD MY PAPY KD IWP NIRIPIV NIV . NAONN MDD DIYINN DINDIND
D17 ) INNRD 2 NN P PNAONA /2 INNRD X ANNX PA (NP NAPP) DOPY DIVP 12 2NN
IIN NPTDIN MX0 SNV .Y JWUP DN PRY 9 DY R ) INRD 'K INN P2 NNINDY D8O
DA PY WP DY NTOYN DIINNR MY PA MPXINPN 2D MIPONY 1M 12 IRNDYO MNIN
DMNNN 971N PY KON WP NIPINIAND WYIN 2D, NION XYY .H¥192 1270 XN T ROV 9 DY N
MO DNIVN THNNI WY ,ANT NND .0MWHY DN)AN DY N20N NYIDMI MDD DIVONN NN
,IININPA NPV MM DY MNTPIND MOLOWN DY MM’ DY 925 ,)ON) IOX DMIPN Mad
TNWH INAM GMIVA NPXITIAN XD NIYINY MNMY DY TTINNNY YTYNY DIDVT D INSDIN
NNMN TPXONPA NPSVII MM DY MNTPINN MOLIVIY 1IN L1029 DY 9N 120N NMINDNNA
MYINND NI MNOY ,PNIAYNA DXDN DINNI DINN NV HY MON PR MY XXM NNIN
219910 DIWIN NNNY 1DOWNN — DIINN MY P PY XD WP — DOYD NNV MIYN NDONN
YTNRN NIO DITHD NNPNNN NNXAN TYN ,DX987 19002 NMDYN DY ,MNINKD DNV
DYP NN PNIYNI MNPIVY NPLDVVLD MLV INM ,MIT DMNIAON MNIYWND YINI IIVNNVY
,UYIN DIVON DY TTINNND MNDNN T531,)129N2 DINRD IRY DI PAD OINNX NN P2 MONN
LNIVAYNI 19IND ,DINN NIDY WYY DIWIN NIDN .DMINN NIY P2 PY XD IWPN NN Y2 IUN
DTN HYOINYIDY M2 N0 YAND D32 — MNTPIND NNIYD MYTNN MOLIWN DY DWNNIN NN
MYTN MOYOY DY 0N PIDN .N2INN MTIV NOX MLV DY PPTN NN DN, 8N D01 DY



MOLIVNN AN NIV N2 NNID WIND NN HY DN DY 29 190N MYN'T 1NV 7o RLIANN NON
TN

qON YN ,DYIN .DNADN Y987 DY 7 TYDA 19IN DDIANN MIXYNPA NPNVIN MM ,NNY TY
VI DT YN DY INPN DN DMNIAOND DXTTIPNN DITPVINDPNN 2987 NN XYY TIY DY
JPPNN NNNMIN NNIND OXNNN NP DY TAN DN INPY 752 IRVIANNDT PVNN TIPN MPIN

NN YN DY NODINN MISONPA NVPIVIN MNND DYTN DY) NININD T IPHN NTIAYa
.DMIAYN DNMIND DTTIPNN DIXPOINIPNN 98T NN YN DY NPV INNHND MININ 98
N1 NMAY XN PIATNA DINN NIY PA PY WP NIPADN : VIV NN IT DY) IDNRND NIPOYD
DMITIPN NN PXDNPN NYA 1) NPIN NIN DIINN P ININD MNDIN NN 7PNONPN IWND
M DY NMY MOLIVIA ONTIPN NN YN QONN VDYDY DY .AYdN NN DINNNDN
INNNIINAY DTN — PNIAYNA DINN P2 DXIYP NI NDOW ¥ TN IR ,1I8INPI NPNLIN
2D

IUPN ONONIVID NN RN PN ,MIXDNP NPSVIN NN HY MLV 190N MYNNNI
NN NIV ;IVHRND MXMIN NN NNXRD ,DMHYS 2WINKD PIYNA DMINND NI DD My
TPNINPN ORNN TIY DY 19152 DI NXIN ININNI TN ,NVOY 52 DINN NNV N3 N .DNTIPN
N2 YN IVHRD MXMIN NN ONN OV DPIDN 7Y AWINKD AIWNN JPNN .OINX N P2
V> 0N OIPN GTYNN N NN MAY ,MONND NN RINN NNIN DY ODIANNL ,0NTIPN
GPNNY NON NYY T2 ,0NTIPN NN NYON MIXDNPY INNRD MXMIN NN DPIN TDIXONP
YINI T IPNN NTIAY NNDNI NYNINNY INNWYNI .)1AVNT DINN NIV P2 PY WP YW DMIPN
SN YMYNWYN NN YT P2TNN 2ADIWNN 1NN D NINIY 1NN 001290 MNOYNI YW NOYTY N8IpD
DXDNIPA NPSVIN MN DY MNY MOLIY 19012 IPNINXND MINNDIN NN DY P ODINY 1PN DN
PINT DIRYNIN DAONA DINN P2 DXPYS DMIYP DY 17 1901 NNYNNA XN MY DY 90N
IPNND MNDIN NN YN MUNNYNN MLIYL DY DN TUN ,DIWP — 9872 NIYNN TNN
.DMNAON HYHOMYIDY AN MNANY NN MDVN DTN DXPNNIY 7202



Case | Casel ll

i j i J
GTG TGC GCC GAA CAA GCC GAG ACG GGG GTG TGC GCC GAA CAA GCC GAG ACT GGG
GTG TGT GCC GCC CAG GCT GAG ACG GGC 616 T6T 86T Gec CAG GeT GAG. GGC
AGA TGC GCC CTT CCC AAA GTA ACG GGA AGA TGC GCA CTT CCC AAA GTA GGA
ATC TGC GCC CTG CAG AAG GAG ACG GGG atc Tc [BBBI CTG CAG AAG GAG ACG GGG
ACT TGT GTC TTG TCT TAC AAA GGA ACT TGT GTT TG TCT TAC AaA JBIEI GGA
GAA TGC @T€ GGG GTC AGC CTT GGG GAA TGC [BTE| GGG GTC AGC CTT [€T€ GGG
GTA TGC GTC ATG CCA AAA GAA GGC GTA TGC GTA ATG CCA AAA GAA GGC
ACA TGT CTT TTG CAG TAC GAC GGA ACA TGT CTT TTG CAG TAC GAC GGA
TAC TGC CTT GCA TCC AAC AAG GGT TAC TGC JBT@I GCA TCC AAC AAG GGT
TTG TGC |CTT. AGT CCA ATT GAT GGC TTG TGC CTA AGT CCA ATT GAT CGA| GGC

Amino acid sequence
i j

VCAEQAETG
VCAAQAETG
RCALPKVTG
ICALQKETG
TCVLSYK
ECVGVSL
VCVMPKE
TCLLQYD
YCLASNK
LCLSPID

@

OO0 0o

DINNPN TIP 1PNR MNMIN 2989 N2 THINIY DIINNR MY P2 INTNPY XINT .2 VIVIY

DONTIPN 1Y 2A¥NY DIRNND ND | -1 1 INND INRD MXDIN NN PSONP Y 0ININN
NTIAY2 NN TION NNIN .(NDYND 11D 1) IND IN (NHYND HINNY TY) NP¥ONPA DN OHIRNNN
15702 129N DXINN NIV P2 PY WP GPYI N1 INND MXMIN NN PXONPY XD I IPNND

V0N NN NON OINND MPXONPN DINTIPN NN IYNRD M) NP



"V P99
D121 DMNIATNN IN2NA SYTNHA NNND ,MMIDIAND TONNA 025719 DINPINNIN DY DMNNIND
WK, (protein domain) ©»my T INDD MNNINNN TONNL 2IWN DIPKI .NMY NPIPNY KON
TTIPN Q87 HY INPIDIAN DTN NIN PIDIT.DMNIATNN DV PN AN DI DNDN MNP DINYD
PNYT MDP OONYY (3 VIVIY) TPIPIMPN 9OV N2 WN ,(250-100 S 79INa 579712)
ND PON2 901N .DINK DMYMMT IN PIIT DY GMYNI IN ONNDKY J9IND ML PPN NN
SV DMINOY INSY 292 TYN SVPIMIP MIANY INNXY IDINA D9PNNI 1IN ,DMIPNRNN HVIAN
NV LY OMNIAYNND DADNN D27 DN HY DIMINVIIONNI TNNND ,NMI) YV DIPDYTN
DT NYOIVN D30 N DOIPNIT 121N DNIAON DMNXHD HINK YNNI .NINSD DIMNDYT
M

N7 TID N2Y0N TN PMINT DY DINADNN TPXININD AN DOV DIMNIT Y2 DMNIAON
DN XY DWINY MPI0N NN YY) M1 1N PIIIT DI HY N2IPN INDADA MNAONN 111 D
21D DY PN INONIVIA YD 19IND NADNN DY NPY NPPY DN TUN DOV OIMINIVT P2
DY ,MAT MYNNY INYN P2 NONYHY TPINND DI NI M) NN DMNAON DY Npd
NN NYPYNDY NN TIPONDY DXWITIN D129N2 NONNY DN NI ;2 N0 NI IONINON
INNY DMININ DMNATNN DY DIV DM, 0781 RNYY

NPIN PIPYD NYNIND TPNDIAND TONNL YD NPNRI MNMP T2 XY ,NON MO
TPDOW MPXDNP Y I RN ,NDNTY .O0MNN MIVNN YIDY D52 DIMNIAYN DY NPY 19D NyInd
DOYIANN DOPI WD TNXNND NYN NXRIN DDV MIXNND NMVIN P2V NOYY N7IIN NINT P2
,DONIT 221N DMNAYNI TN TYNRD VI NIWN TPXNND MY NPY NP Mapya
NI NMVI YA DN RN OMIASNNN DVIN KD PON DINNND DN — DYDY 1NNV 295V NPON
TDNYNIND

OV MINITMIND YINOND N7Y NN WHRNWA DOINNN 1PN 1AND NNPDN VWY DOWN ToNna
VIIND YTPINY DVINN TONN2 NP NIN MIVWAND NHYY TR PN .DMMMT 12171 0NN
P09 NIVIY NNIND IINNN 2OV DNOY DIMNIYT DY DINN YIIN NTY 1INYT P DINDN
VI92) NN ONYL,PIIIT IINX PINIIT HY NP YOS D1 DN D) (DMNDN DINIAON) DINIY'Y
NYINI DMNIATN DIDP YHNN INYN P2 Y1OONT IMYNYN DINIY'N TIVA ¥ (DXOPIPPN OINN
DMMNYT OV NPIPOD RIN OIMNIT 2170 DINIADN DY ININN NYIND YINY GO NN 7PN
NOYN DN DT P2 M XX PNTY RO TV NYON DM TIN) 298I 11PNT DY DOV
)21 DYPY PINITN TINT MYITIN NPEPRIVIND DIPNI 0PI NPIPRIVIND DMDDN NN
NOY NOIYNY MM DY NIDN NN DXDIN PAD KOO DNMNIT 22170 DINIADN ONRNNY) DN
DY) DIMNOYT 221N DONIAYN XD DD NMIAM T2 PIMIT DY DINIAYNA NP NNMN
DMIAON DY MV M LGN DY YT WHNYI N IPNN NTIAY NN .DOPIN NN NPD D199pnNn
0N NIV TPXNN NYIND NN YSY OND IPD 219D ¥IN) INIRYIY MIODN DIIT WIND NIy
JAONN TN DY DDA 12ya



The repertoire of domain superfamilies. ..
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Domain

E?,/

...duplicates and recombines to form single and multi-domain
proteins.
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Supradomain

The same combination can adopt different geometries. ..

p

...andfor different functions.
_| I H H |_ Catalytic site or ligand

2195V My DN DIMNIT YN DINIAVN .0MAYN HY 199327 $AND DTN TPPaN .3 VIVIY

DMNITHY PXPIMIP VAN ININD D)AD1DD DIXPNI NNAVNI NNIND DIINYN DIMNT .7IXPIMPN

MPY VIVLIVYN .(Supradomain) DXV DTN YNNI NPNDN MIPNSY YNV NP1 DNDN 1702

.(Vogel et al., 2004) o nX »y 92y2 NNWIY NTIAYN



YN —DMYND NYY TA92O9DOPN YN YINTY Y002 NN XIN PNADNN NIVIY TN

DY YT NN NY PADY 5150 PNIAONN TNIXR MLV NMINY AT INX NAONN DY WPYN NHONTO

VINA NI D9PNN NIADNN N MPNAD YINA NN PODN PNAINN TN : DY 99521 — PIINON

NV SY MTTHN DY NUIY DN MM DY NDDIIINN NIIYN) XN WY SONN NVXAN MNID

SY DISY 90N YY YN 1D PO DI TNIND NN WINOYW )90 (DN NNV D19 D)1a9N
025N

NPIN NIMV) NHEYP DT NV DY DMIADN 1D NI N IPNHN NTIAY NNDNI
MIVAN 1201 .(4 VIVIVY) PPOPIITIPN NP DMMIDYN DIXP NN SPNINN NP DI
T2 ,¥202 PIPOO NNMP — VY NPN AXPY NIAONN THIX P2 22NN IWPNN YOI N VD
13 90 % RTND NN DY HOHY0PI2PN NP2 DNIOWN AN 9119 I09PNY MPNND NP DIIINDVTY
YITNIN HY NPYTAN NANMN ,DMNIADN DY NNNDN NNAVNY IN DMINAD DMIPNNND MTIN NN
T 0 ON INTN DMATNT MNWND) DMNINNIN DY DINYY DININVITN Y9ONRY DIV
TPMYNRYNI NN D NZHNN QNI IPTIY DINATNN NIXIAP YD) DIDINVIION DY G0N 2192 NIRND)
LDOVVIPYN TYNRN DXOPIPINY DN INY

970 SYW VIMNN TIVN? NN TTH NN ,DONADN HY 19PN A8P NN TIYNY NOON 711
P2 THI90N 982 NN MNDIN 90N Y8 NN WX (@bsolute contact order) »orwpn
TTD 3 KN T PNIYA WY DIPNN DNPNRN NIATNN M1I2ND ODPIT WP DINNNIN DIIY
VINI N IPNN NTIAY NNDN YW MINMND .NIAONN DY D199PN AXPY 19N IWP RN MY
YPNINN NNPA DIMNITY VI ¥ 1 RN — NN MOV 1IN DY DIMNIT MY OHYa DMNIASND
DINNNI .ONY TIIDN P2P0PI12IPN NP DMIMNYITAN TN DIVPN ITO DY VINMN TIY DY NPNY
129 OPNNRN N8P DMIMNITY T ,¥202 MPXPYD WY NNIND 9N SN 19IND ,D¥IMIN O
1912 PMYNYN ND MNPODY MIVIN NIYO IDPOPIATIPN N¥PA DNOVN DIMNRYITNIN INY 1NN
Y30 LTPNMND NXANY D1DOW PHNN — DIMMYT MY dHYa DINATN DY NPD DIDH NyIn nvnd
NPINAN XND XN ,TPIINVND DOYANN DOPII NN DID Wi RNNY TN DY D80 ONNY
DY D12AONN FPXINND AN NNIND NPV PNN NN MV NINT DY DNAOND 12 ANND NOANY
DMAYN D NN ,NNT IPNN NTIAY NNDNA YIAY 9PN NI NINDA ,)ON NI NV M)
NI DY DN PDPOPITIPN NXPA YOV PIDITNIN IXPNOINNND NXP PINYT DY DNIMIT NIV Y]
NPNYOIPNIND NXPA DIIPMIT DY NMVIN NAY ,NIYYNA DN NYN DININND .NIMI) TN NV
2P T MINPODN NYAN — DNIMMT MY OHYI DMNIATNA PDPOPIAIPN NP DIMNYITNN DIINP
77T 5Y 1IN0 051D DXVPIPYR TYNN DIVPIPINNT INY NPIN 1T NMVI DN’ DIRNNNN PO
NN O»PY PPNN DIINIYNN TIVA TTYNL TPEININD NOYL DY SVPIPIIN RNN DY MTNHNNNN
DM P2 TPXNN NYNINY 2¥2 191N OIVY NN DOWNN YN DININN ,01D0D SOPIPIND
.DYNIT Y21 DMADNI DD
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)19 HNMYY 19NN N8P I8P 1PMTY ¥aa D391397 2V YHYa 0NN HY NMVIN 4 VIVIY
YD OPNND NNPA NP PINIT OHYA DNAYNN 990N P2 DN NN ISMND IPIIND DS INIPN
NNMN XD 12 28D GPYI TYN INIPRD DITHN IO0PIATIPN N8P ISP PIIT DY DMAYNN 19010
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