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Abstract 
Amino acid and nucleotide sequences constitute a rich source of information that can be used to 

address a wide range of biological questions. The enormous amount of biological data that are 

rapidly accumulating from sequencing efforts, on the one hand, and from other types of 

experiments (e.g. three dimensional structure determination) on the other hand, are creating new 

opportunities to correlate protein sequences with their structure and function. Nevertheless, 

while the number of sequenced genomes continues to grow exponentially, other types of 

experiments have not kept pace. For instance, despite the great progress in experimental 

determination of protein three-dimensional structures, we know many more protein sequences 

than protein three-dimensional structures, and the gap is getting bigger. Thus, many 

bioinformatics applications which predict the properties of proteins or genes based on sequence 

data alone, were developed during the last three decades in order to bridge this gap. Nevertheless, 

the success of many of these prediction methods is limited, but their results are encouraging 

since they enable the discovery of knowledge that is difficult to obtain by experiments. Thus, 

despite many years of sequence analysis in biology, extracting biological insights from 

sequences alone is still a challenging task. In my thesis, I describe two studies in which I 

addressed this challenge.   

First, I describe how codon-level information improves predictions of inter-residue 

contacts in proteins by correlated mutation analysis. Genomic sequences contain rich 

evolutionary information about functional and structural constraints on proteins. This 

information can be mined to detect correlated mutations in proteins and address the long-

standing challenge of predicting protein three-dimensional structures from amino acid 

sequences. Methods for analysing correlated mutations in proteins are becoming an increasingly 

powerful tool for predicting contacts within and between proteins owing to the explosive growth 

in sequence data and significant theoretical progress.  Nevertheless, limitations remain due to 

the requirement for large multiple sequence alignments (MSA) and the fact that, in general, only 

the relatively small number of top-ranking predictions are reliable.  To date, methods for 

analysing correlated mutations have relied exclusively on amino acid MSAs as inputs.  In my 

thesis, I describe a new approach for analysing correlated mutations that is based on combined 

analysis of amino acid and codon MSAs.  I show that a direct contact is more likely to be present 

when the correlation between the positions is strong at the amino acid level but weak at the 
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codon level.  The performance of different methods for analysing correlated mutations in 

predicting contacts is shown to be enhanced significantly when amino acid and codon data are 

combined.  

In the second study, I revealed a strong tendency in all kingdoms of life for N-

terminal domains in two-domain proteins to have shorter sequences than their neighboring C-

terminal domains.  Given that folding rates are affected by chain length, I asked whether the 

tendency for N-terminal domains to be shorter than their neighboring C-terminal domains 

reflects selection for faster folding N-terminal domains.  Calculations of absolute contact order, 

another predictor of folding rate, provided additional evidence that N-terminal domains tend to 

fold faster than their C-terminal neighboring domains.  A possible explanation for this bias is 

that faster folding of N-terminal domains reduces the risk of protein aggregation during folding 

by preventing formation of non-native interdomain interactions.  This explanation is supported 

by protein expression analyses I performed which demonstrated that two-domain proteins with 

a shorter N-terminal domain are much more abundant than those with a shorter C-terminal 

domain. These findings, therefore, suggest a previously unrecognized mechanism for prevention 

of aggregation of neighboring domains in multi-domain proteins. 

 

The first study of this thesis was published in eLIFE: 

Jacob, E., Unger, R. and Horovitz, A. (2015). Codon-level information improves 

predictions of inter-residue contacts in proteins by correlated mutation analysis. eLife 

2015;4:e08932. 

 

The second study of this thesis was published in Cell Reports: 

Jacob, E., Unger, R. and Horovitz, A. (2013). N-Terminal Domains in Two-Domain 

Proteins Are Biased to Be Shorter and Predicted to Fold Faster Than Their C-Terminal 

Counterparts. Cell Rep. 3 (4), 1051-1056. 
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Chapter 1 

1 Introduction 
 

1.1 Sequencing Methods 

The determination of the first complete amino acid sequence of a protein by Sanger in 1955 

showed that a protein has a unique amino acid sequence. Before that, it had been only 

known that different proteins had different amino acid compositions and the common 

assumption was that molecules of the same proteins are not identical to each other. 

Sequencing projects during the 1950’s were a difficult manual process that consumed a lot 

of time. For example, the determination of the complete amino acid sequence of insulin 

(including 2 chains and disulfide bonds) by Sanger was an iterative process that lasted from 

1945 to 1955 and led to approximately ten stand-alone publications describing each step 

separately (Stretton, 2002).  In the following decade, manual sequencing processes were 

gradually improved and, consequently, the rate of sequence determination increased. By 

the mid 1960’s, with the determination of the complete amino acid sequences of other 

proteins including ribonuclease by Anfinsen, there were a total of 65 known sequences 

(Table 1.1). By contrast with the advances in protein sequence determination technologies, 

sequencing nucleic acids had remained problematic mostly because of difficulties in 

purification and sequencing of long molecular fragments (less than ~500 bp). In 1977, 

however, Sanger introduced a DNA sequencing method (Sanger et al., 1977) that made it 

possible to sequence longer nucleotide fragments. His method became known as “Sanger 

sequencing” or “first-generation sequencing”.  

In the mid-1980’s, a significant increase in productivity was made possible due to 

the automation of Sanger sequencing techniques. This advance led to a dramatic growth in 

the number of determined sequences (Figure 1.1) and laid the foundations for the 

sequencing of the first human genome. Eventually, in 2003, after almost 15 years of efforts 

around the world, the sequencing of the first human genome was declared completed 

(Table 1.1). Since then, much faster and cheaper sequencing methods have been developed 

that are known today as “Next Generation Sequencing” methods (e.g. The Illumina MiSeq 

and LifeTechnologies Ion Torrent Personal Genome Machine (PGM)) and have made 

sequencing accessible to more labs. These next-generation sequencing (NGS) methods are 
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based on massive parallel sequencing technology.  In this technology, millions of 

fragments of nucleotides from a single sample are sequenced simultaneously, allowing an 

entire genome to be sequenced in less than one day. The easy accessibility and the short 

experimental time of these methods enabled the rapid increase in the amount of research 

being performed with nucleic acid sequencing. Consequently, the number of sequences 

deposited in public databases has been growing exponentially. Importantly, NGS has also 

become a platform to invent new research tools that are sequence-census based (Wold and 

Myers, 2007). For example, NGS is used to find transcription factor binding sites using 

ChIP-seq technology (Johnson et al., 2007), discover methylation patterns across the 

genome using Methyl-seq, measure mRNA expression using mRNA-seq, reveal folding 

principles of the human genome (Lieberman-Aiden et al., 2009) and much more. 

 

Year Protein RNA DNA No. of residues 

1935 Insulin   1 

1945 Insulin   2 

1947 Gramicidin S    5 

1949  Insulin    9 

1955  Insulin    51 

1960 Ribonuclease    120 

1965  tRNAAla   75 

1967  5S RNA   120 

1968   Bacteriophage λ 12 

1977   Bacteriophage φX 174 174 5,375 

1978   Bacteriophage φX 174 174 5,386 

1981   Mitochondria 16,569 

1982   Bacteriophage λ 48,502 

1984   Epstein-Barr virus 172,282 

2004*   Homo sapiens 2.85 billion 

2009  Total base pairs in NCBI 
Sequence Read Archive (SRA) 

1.35E+13 

2015  Total base pairs in NCBI 
Sequence Read Archive (SRA) 

2.75E+15 

Table 1.1 Sequencing landmarks. 

Table is based on the work of others  (Attwood et al., 2011). * Completion of the human 

genome was already declared in 2003. 
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Figure 1.1. Historical milestones in bioinformatics. 

Figure adopted from the work of others (Attwood et al., 2011) and a presentation by Teresa 

K. Attwood (with some modifications).  
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1.2 Databases 

The increase in the number of known protein sequences prompted Margaret Dayhoff and 

co-workers (Dayhoff et. al, 1965) to organize the first computerized collection of protein 

sequences that initially comprised 65 sequences (the collection was called “Atlas of Protein 

Sequence and Structure”).  Dayhoff and her colleagues understood that tremendous 

amounts of information about the evolutionary history and function are contained within 

each sequence.  

Advances in nucleotide sequencing brought about a need for organization and 

analysis also of DNA and RNA sequences (Gingeras and Roberts, 1980). Several 

nucleotide databases were, therefore, established. In 1982, the European Molecular 

Biology Laboratory (EMBL) in Heidelberg released 568 sequences and GenBank, which 

was established in December that year, brought 606 sequences to the public domain (Figure 

1.1; table 1.1). The world of protein sequences, which to a certain extent was overshadowed 

by the efforts to collect nucleotide sequences, continued to grow and reached a size of more 

than 1660 amino acid sequences (Figure 1.1). The late 1980’s and early 1990’s, just before 

the WWW emerged, were characterized by intense activity that gave rise to new sequences, 

databases (e.g. Swissprot in 1986), characterization of protein families (e.g. PROSITE), 

and data maintenance and support organizations (e.g. The European Bioinformatics 

Institute (EBI)). By 1995, sequencing technologies made whole genome sequencing 

feasible and the genomes of several organisms were sequenced including the first human 

genome . In the 2000’s, Next Generation Sequencing (NGS) technologies led to enormous 

amounts of sequence data that were collected in several public archives such as NCBI 

Sequence Read Archive (SRA) and European Nucleotide Archive (ENA). As an example 

for the dramatic increase in the amount of data produced, SRA consisted in January 2009 

of 1.35E+13 nucleotide bases and in November 2015 was already storing 2.75E+15 

nucleotide bases. In addition, the significant changes in speed, costs and flexibility of NGS 

made it to become a central method that is used in international collaborations projects. An 

example of such a project is The Cancer Genome Atlas (TCGA), which was initiated in 

2005 as an organized effort to accelerate our understanding of the molecular basis of 

cancer. Today, TCGA consists of many types of data (e.g. DNA and mRNA sequencing, 

protein expression, copy number and DNA methylation) for thousands of samples. 

Although sequences provide a substantial source of information and have drawn a 

lot of attention over the years, valuable data of other types were also accumulating. One of 
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the main depositories that began to increase dramatically at the end of the 1980’s was the 

protein data bank (PDB). The improvements in crystallization methods, the newly 

established molecular biology capabilities to clone genes and express proteins, and the 

technological advancements in computer software and X-ray detection methods, made it 

possible to make substantial progress in protein structural determination (Berman, 2008).   

Again, as in the case of biological sequences, the rapid development in all aspects of the 

experimental procedures resulted in the dramatic growth in the number of solved structures 

collected in the PDB. In addition to structure determination, numerous other experimental 

methods were invented and improved during the years (e.g. single cell analysis, 

Immunohistochemistry, methods to investigate protein-protein interactions). One example 

is the development of microarray technologies to measure gene expression during the 90’s 

(Lenoir and Giannella, 2006). These technologies became widely used and have produced 

much information on gene expression in humans and other organisms under different 

conditions. Today, the gene expression omnibus at NCBI (GEO) maintains enormous 

amounts of microarray experiments data deposited by different laboratories across the 

world.   
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1.3 Sequence Analysis 

The first sequence alignments, which were carried out for insulin, ribonuclease and a few 

other proteins, were based on a small number of homologous sequences from several 

species. Comparing two amino acid or nucleotide sequences was one of the first types of 

analysis that were required when sequencing data became available. In 1970, Gibbs and 

McIntyre described a simple method for comparing sequences that is called the dot matrix 

or diagram  (Gibbs and Mcintyre, 1970). In this method, the two compared sequences are 

written along adjacent sides of a rectangular matrix with their N-terminal amino acids in 

the top left-hand corner of the diagram. Within the matrix, a dot is plotted whenever a row 

and a column share the same amino acid. Similarities of the two sequences are then 

indicated by a diagonal line of dots.  (Figure 1.2). This method is also able to reveal 

insertions, deletions, and repeats when the same sequence is used in the horizontal and 

vertical axis of the dot matrix.  

 
Figure 1.2. A dot matrix (diagram) obtained by comparing the human cytochrome c 

(Y-axis, N-terminal at the top) and the cytochrome c of monkey, fish and 

Rhodospirillum. 

The figure is taken from previous work of others (Gibbs and Mcintyre, 1970). 
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Nevertheless, visual comparisons of sequences were tedious and involved 

subjective assessments and, thus, computer-based statistical approaches were required. 

Indeed, in the same year that the dot matrix was introduced, Needleman and Wunsch 

(Needleman and Wunsch, 1970) presented their dynamic programing approach for global 

sequence alignment. In their work, they described an iterative matrix procedure to find the 

maximum match between two sequences, that is, the largest number of amino acids or 

nucleotides in one sequence that can be matched with those of another sequence, while 

allowing for all possible deletions (Needleman and Wunsch, 1970). In their method, the 

problem is broken down into the smallest unit of comparison, a pair of amino acids. The 

alignment is built progressively by starting at the C-terminal end of each sequence and then 

moving ahead one amino acid pair at a time, allowing for various combinations of matched 

pairs, mismatched pairs, or insertion/deletion of amino acids in one sequence. This process 

results in every possible alignment between the two sequences and by using a scoring 

system which prioritizes a match over a mismatch and penalizes gaps, the alignment with 

the highest possible score was defined as the optimal alignment. An important modification 

to their algorithm was the local sequence alignment method introduced by Smith and 

Waterman (Smith and Waterman, 1981) in 1981. They recognized that the most 

biologically significant regions in sequences were the segments that aligned well and not 

the other less related regions that were not well aligned. Smith and Waterman extended 

Needleman’s and Wunsch’s idea to find a pair of sub-regions, one from each of two long 

sequences, such that there is no other pair of segments with greater homology (Smith and 

Waterman, 1981).  

Given that the local and global sequence alignment methods required a great deal 

of time resources those days, a method that can perform a database scan for similarity in a 

short time was highly needed. In 1988, Pearson and Lipman developed a program called 

FASTA (Pearson and Lipman, 1988), which provided a rapid way to perform such 

similarity scans. Two years later, a faster method for similarity search was introduced by 

Altschul et al. (Altschul et al., 1990). basic local alignment tool, known as BLAST, has 

been and is still a widely used sequence analyses program.  

Comparing more than two sequences simultaneously (i.e. multiple sequence 

alignment) required the design of new tools since dynamic programing implementations 

were too computationally demanding. Thus, several improvements were introduced 

(Johnson and Doolittle, 1986; Lipman et al., 1989), including the development of the 

commonly used multiple sequence alignment (MSA) software tool called CLUSTALW 
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(Thompson et al., 1994). Since its first implementation, MSA became an increasingly 

important tool in biology and has been used in molecular evolution to construct 

phylogenetic trees (Felsenstein, 1989; Hogeweg and Hesper, 1984), identify distantly 

related sequences of a protein family based on conserved regions (Gribskov et al., 1987), 

predict functionally or structurally important residues (e.g. Casari et al., 1995; Karlin and 

Brocchieri, 1996) and much more. 

 

1.4 Recent Progress and Future Perspectives  

As influx of biological data from different sources became a routine, efforts were made to 

improve the use of many biological resources (e.g. the 2015 Nucleic Acids Research 

(NAR) database summary paper reported over 1800 valid databases (Galperin et al., 

2015)). In addition, attempts to link related bioinformatics databases together and enhance 

biological annotations, enabled an efficient retrieval of gene or protein related information 

from diverse resources (e.g. mRNA expression, structural and functional data). 

Increasingly, more nucleotide and amino acid sequences are linked to information from 

other sources, such as 3D structures, protein and mRNA expression. Nevertheless, while 

the number of sequenced genomes continues to grow exponentially, other types of 

experiments have not kept pace. For instance, despite the great progress in experimental 

determination of protein three-dimensional structures, we know many more protein 

sequences than protein three-dimensional structures, and the gap is getting bigger.  Indeed, 

in order to bridge this gap, many bioinformatics applications which predict the properties 

of proteins or genes (as their three dimensional structures or functions) based on sequence 

data alone, were developed during the last three decades (Table 1.2). Many of these 

methods combine information from diverse sources in biology along with amino acid or 

nucleotide sequence information. Furthermore, although the success of many of these 

prediction methods is limited, their results are encouraging since they enable the discovery 

of knowledge that is difficult to obtain by experiments. Thus, with this theoretical progress, 

the exceptional advances of sequencing technologies, and the increase in the amount and 

availability of diverse data sources in biology it is clear that many insights remain to be 

obtained through analysis of protein sequences. 
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Computational 

method 

Types of information 

used in analyses 

The purpose of the tool Examples of 

publication/Application 

name 

Neural networks MSAs and secondary 

structure data from the 

PDB 

Predict protein 

secondary structure from 

sequence alone 

(Rost and Sander, 1993) 

(Jones, 1999), PSIPRED 

Neural network Sequence and structural 

data of PDB complexes 

Predict protein-protein 

interactions interfaces 

(Ofran and Rost, 2003a, 

2003b) 

Bayesian 

framework 

Combines protein-protein 

interactions data (e.g. 

Y2H) ,structural, 

functional, evolutionary 

and expression 

information 

predicts whether a pair 

of proteins interact 

(Zhang et al., 2012), 

PrePPI 

Statistical model ChIP-seq experiments 

and nucleotide sequences 

Identifying transcription 

factor binding sites 

(Wang et al., 2012a) 

Statistical 

models 

MSAs and structural data Predict the three 

dimensional structure of 

proteins 

(Balakrishnan et al., 

2011; Hopf et al., 2012; 

Jones et al., 2015; 

Morcos et al., 2011) 

Empirical 

Bayesian or ML 

algorithms 

 

MSAs, derived 

phylogenetic tree and 

protein structure 

estimating the 

evolutionary 

conservation of 

amino/nucleic acid 

positions in a 

protein/DNA/RNA 

molecule 

(Glaser et al., 2003), 

ConSurf server 

Table 1.2 Examples of applications that combine amino acid or nucleotide sequence 

and other types of information in their analysis. 
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Chapter 2 

2 Incorporation of codon data 
in correlated mutation 

analysis 
2.1 Introduction 

The explosive growth in sequence data from current high-throughput techniques enables 

analysis of functional interaction patterns at the DNA or RNA level (e.g. RNA folding), 

cellular level (e.g. regulation and organization, interactions between proteins) and the 

amino acid residue level (e.g. protein contact prediction). In particular, genomic sequences 

contain rich evolutionary information about functional and structural constraints on 

proteins. For example, many computational methods for predicting protein three-

dimensional structures were developed over the years for homology modeling, i.e. 

predicting structures using known three-dimensional structures with sequences that are 

similar to that of the protein of interest. Such structures are, however, not always available 

and evolutionary information found in patterns of correlated mutations in protein sequences 

can then play a major role in predicting the 3D structure of a protein (de Juan et al., 2013; 

Marks et al., 2012). Correlated mutations can arise since the effects of mutations which 

disrupt protein structure and/or function at one site are often suppressed by mutations that 

occur at another site (either in the same protein or in another protein). Such compensatory 

mutations can occur at positions that are distant from each other in space, thus, reflecting 

long-range interactions in proteins (Horovitz et al., 1994; Lee et al., 2008).  It has often 

been assumed, however, that most compensatory mutations occur at positions that are close 

in space. This has motivated the development of computational methods for identifying co-

evolving positions that can be used as distance constraints in protein structure prediction 

(Göbel et al., 1994) (Figure 2.1). 

Methods of CMA consist of the following steps: first, a multiple sequence 

alignment (MSA) for the members of an evolutionary related family of proteins is created. 

Next, the frequencies of co-occurrence of all amino acids in all pairs of columns are 

calculated and compared to those expected assuming that the frequencies of occurrence at 
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one position are independent of those at the second position. Finally, the correlations are 

ranked according to the statistical and/or physical significance attached to them.   

 

Figure 2.1. Identifying co-evolving positions as distance constraints in protein 

structure prediction. 

The sequence of the protein (chain of gray circles) for which a 3D structure is to be 

predicted is a member of a family of evolutionary related sequences (the MSA in light gray 

letters). The evolutionary variation in the sequences (colored columns in the MSA) is 

restricted by a direct physical contact (red circles on the right). This figure is taken from 

previous work of others (Marks et al., 2011). 

  

 Various methods for CMA that have been developed in the past 15 years differ in 

the measures that they employ for attaching significance to the correlations (de Juan et al., 

2013; Livesay et al., 2012; Mao et al., 2015).  Early measures that were developed assume 

that pairs of residue positions are statistically independent of residues at other positions 

(Dekker et al., 2004; Göbel et al., 1994; Kass and Horovitz, 2002; Lockless et al., 1999; 

Martin et al., 2005). Such methods include, for example, mutual information (MI) from 

information theory (Gloor et al., 2005), observed-minus-expected-squared (OMES) in the 

chi-square test (Kass and Horovitz, 2002), statistical coupling analysis (SCA) (Lockless 

et al., 1999) and the McLachlan-based substitution correlation (McBASC) (Olmea et al., 

1999) 

Statistically significant correlations in MSAs that do not reflect interactions 

between residues in contact, i.e. false positives, can stem from (i) various indirect physical 

interactions and (ii) common ancestry.  The extent of false positives due to the latter source 

is manifested in the large number of correlations between positions in non-interacting 

proteins that can be observed when the sequences of non-interacting proteins from the same 

organism are concatenated and subjected to CMA (Noivirt et al., 2005).  Several 

approaches for removing false positives owing to common ancestry were developed (Dunn 
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et al., 2008; Noivirt et al., 2005; Pollock et al., 1999; Wollenberg and Atchley, 2000) on 

the basis of the early methods but their success in contact prediction remained limited. 

False positives due to the former source, i.e. indirect physical interactions, can occur when, 

for example, correlations corresponding to positions A and B that are in contact and 

positions B and C that are in contact lead to a correlation for positions A and C that are not 

in contact.  Methods that remove such transitive correlations have been developed in recent 

years. These methods, in contrast with the earlier ones, consider correlated pairs of residues 

as being dependent on all other positions, thereby reducing the effect of noise due to 

transitivity. Examples of such methods include Direct Coupling Analysis (DCA or DI for 

Direct Information) (Morcos et al., 2011; Weigt et al., 2009), Protein Sparse Inverse 

COVariance (PSICOV) (Jones et al., 2012) and Gremlin’s pseudo-likelihood method 

(Kamisetty et al., 2013).  These methods have been found to be very successful in 

identifying contacting residues (Marks et al., 2012; Stein et al., 2015) and they outperform 

earlier methods (Mao et al., 2015).  Nevertheless, their accuracy, which is ~80% for the 

correlations in the top 0.1% (ranked by their scores), drops to ~50% for the top 1% (Mao 

et al., 2015).  Given that the number of contacts in a protein with N residues is ~N (Faure 

et al., 2008), it follows that for proteins with, for example, 100 residues (i.e. with 4,560 

potential contacts between residues separated by at least 5 residues in the sequence) only 

about 25% of the contacts (i.e. 23 of the top 1% 46 predictions) will be identified by these 

CMA methods.  In addition, these methods require large MSAs comprising thousands of 

sequences in order to perform well and such sequence data are not always available. 

Consequently, it is clear that much can be gained from further improvements in methods 

of CMA.   

 In this thesis, I describe a new approach for analysing correlated mutations that is 

based on combined analysis of amino acid and codon MSAs.  I show that a direct contact 

is more likely to be present when the correlation between the positions is strong at the 

amino acid level but weak at the codon level (Figure 2.2).  The performance of different 

methods for analysing correlated mutations in predicting contacts was found to be 

enhanced significantly when amino acid and codon data are combined. 
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Figure 2.2 Example of a pairwise correlation in a multiple amino acid sequence 

alignment and two possible corresponding codon alignments. 

A correlation at the amino acid level between two positions i and j may (top left) or may 

not (top right) be accompanied by a correlation at the codon level.  The premise of the 

method introduced in my thesis is that a correlation at the amino acid level between two 

positions is more likely to reflect a direct interaction if the correlation at the codon level 

for these positions is weak (top right).   
 

2.2 Methods 

2.2.1 Collection of sequences 

The growing availability of sequences of sufficient diversity as a result of advances in DNA 

sequencing technologies over the past decade (Figure 2.3) enabled the significant progress 

in protein structure prediction based on evolutionary information. Uniprot/TrEMBL 

currently consists of more than 571,000 species, with a strong bias towards several heavily 

sequenced species (6.6% of the whole database corresponds to 20 species that comprise 
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only 0.0035% of the total number of species). The most prominent source of sequences is 

bacteria that account for more than 60% of the sequences in Uniprot/TrEMBL (Figure 4).   

 

Figure 2.3 Growth of Uniprot/TrEMBL in the last ~20 years. 

Based onRelease 2015_10 of 14-Oct-2015 of UniProtKB/TrEMBL. The figure is taken 

from Uniprot/TrEMBL statistics (http://www.ebi.ac.uk/uniprot/TrEMBLstats).  

 

 

 

Figure 2.4 Taxonomic distribution of sequences. 

Based onRelease 2015_10 of 14-Oct-2015 of UniProtKB/TrEMBL. The figure is taken 

from Uniprot/TrEMBL statistics (http://www.ebi.ac.uk/uniprot/TrEMBLstats). 
 

http://www.ebi.ac.uk/uniprot/TrEMBLstats
http://www.ebi.ac.uk/uniprot/TrEMBLstats
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2.2.2 Multiple sequence alignments 

2.2.2.1 Overview of MSAs 

Multiple sequence alignments (MSA) have been used in a wide range of bioinformatic 

applications. MSAs are used to infer functional sites (Glaser et al., 2003; Pupko et al., 

2002), predict protein structure (de Juan et al., 2013; Marks et al., 2012), classify proteins 

into families using sequence phylogenetics (Casari et al., 1995; Pethica et al., 2012) and 

more. Although MSAs can be comprised of DNA, RNA or amino acid sequences, it is most 

common to align proteins using only their amino acid sequences. Such an analysis has 

advantages and disadvantages. For example, aligning nucleotide sequences instead of 

amino acid sequences introduces frame shifts but, on the other hand, closely related 

sequences can be more easily distinguished. The problem of frame shifts can be solved 

with the use of codons instead of nucleotides. Nevertheless, for more distantly related 

species, amino acid sequences may have the advantage of acting as a filter to reduce noise. 

Multiple amino acid sequence alignments have, to date, been the exclusive input for 

methods for analysing correlated mutations. 

 

2.2.2.2 MSAs and correlated mutation analysis 

MSAs consist of sequences that share an evolutionary relationship (i.e. homologs). These 

sequences are usually collected using a sequence-based search method (Altschul et al., 

1990, 1997; Camacho et al., 2009), profile HMM (Eddy, 1998; Finn et al., 2011) or other 

methods and then aligned using a multiple sequence alignment tool  (Edgar, 2004; Katoh 

et al., 2002; Notredame et al., 2000).  The size of the MSA (i.e. the number of sequences 

that it includes) depends on the level of sequence similarity between its members (e.g. an 

alignment score), search method (e.g. blast or profile HMM as HMMER3) and types of 

homology considered (e.g. sequences of orthologs only or of both paralogs and orthologs). 

Other factors that influence the MSA quality and size are the databases that were used to 

search for homologous sequences, the level of redundancy that was used for filtering and 

more. The general rule of thumb is that larger MSAs contain more information. 

Nevertheless, the tradeoff is that including more sequences can result in adding bias or 

noise (e.g. bias towards a subset of related sequences in the MSA or certain species), low 

quality alignment and inclusion of proteins with unrelated function. The relevance of these 

factors needs to be considered in accordance with the application.  In this thesis, in order 
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to correct the bias for certain species, a resampling technique is used before constructing 

an MSA. The sequences for each MSA of a protein family are collected from representative 

proteomes, i.e. proteomes each of which represents best a group of proteomes with similar 

sequences (Chen et al., 2011). In this way, over- and under-represented species contribute 

equally to the analysis. In addition, several methods for contact prediction described in this 

thesis include a reweighting procedure as a correction for this and other biases (see the 

section Regularization and reweighting of frequency counts). 

In CMA, when one wishes to predict contacts within a protein family (i.e. intra-chain 

interactions) with high accuracy as done here, it is advantageous to use as much 

information as possible, i.e. sequences of distant homologs and both orthologs and 

paralogs, as long as the bias towards a subset of related sequences in the MSA or certain 

species is limited. On the other hand, when the goal is to predict contacts between two 

different proteins (i.e. inter-chain interactions), the MSAs usually comprise fewer 

sequences since only concatenated sequences of interacting proteins from the same 

organism can be included (Hopf et al., 2014). In this thesis, each MSA is built from 

sequences that are from the same protein family. A protein family is a group of proteins 

that are closely related with respect to their function, structure or evolution. Our analysis 

was done as before (Marks et al., 2011; Morcos et al., 2011) using MSAs from Pfam 

families. The Pfam database is a large collection of protein families (more than 14,000 

different families) each of which is described by an MSA and a hidden Markov model 

profile (HMM) (Finn et al., 2014; Punta et al., 2012). HMM is a probabilistic model 

(Rabiner, 1989) used for the inference of a homology structure from a set of aligned family 

representative sequences (Eddy, 1998; Eddy and Wheeler, 2013; Krogh et al., 1994). A 

high-quality seed alignment is used to construct the profile HMM of a domain family with 

which it is then possible to search any large sequence database (e.g. UniprotKB) for all 

instances corresponding to a particular domain family. In this way, a large database of 

MSAs, representing domain families with diverse structures and lengths, was used for the 

analysis. Note that in most cases, each MSA contains many sequences with known 

structures, thereby helping to assess the reliability of contact prediction. 
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2.2.2.3 Generation of codon and amino acid MSAs 

Protein sequence datasets were collected from Pfam version 27.0 (Finn et al., 2014) based 

on representative proteomes (Chen et al., 2011) at 75% co-membership threshold (RP75) 

in order to avoid overrepresentation of certain species. Protein coding sequences (CDS) of 

the collected proteins from Pfam were retrieved based on Uniprot cross reference 

annotations (for Refseq, Ensembl, EMBL and Ensembelgenomes databases in that order 

of priority) (Cunningham et al., 2014; Kanz et al., 2005; Pruitt et al., 2012) using  the 

EMBL-EBI's WSDbfetch services (McWilliam et al., 2009) and Ensembl REST API (Beta 

version) (Yates et al., 2015).  All collected CDSs were aligned in accordance to the Pfam 

HMM-based MSAs using tranalign tool from the EMBOSS package (Rice et al., 2000).  

Pfam domain families with more than 2,000 successfully retrieved coding sequences were 

used for further analysis (total of 551 MSA’s).  Only families with a known crystal structure 

at a resolution of 3 Å or better (more than 95% of the families have at least three such 

structures) and with an overlap of at least 80% of the domain sequence to the ATOMs 

sequence in the solved structure were included in the analysis (total of 460 MSA’s).  Our 

analysis was also restricted to proteins with more than 200 residues that have a large 

number of potential contacts for prediction (114 MSA’s).  PDB structures were assigned 

to Pfam families in accordance to the mapping in the files downloaded from 

http://www.rcsb.org/pdb/rest/hmmer?file=hmmer_pdb_all.txt and 

ftp://ftp.ebi.ac.uk/pub/databases/msd/sifts/text/pdb_chain_uniprot.lst. PDB structures 

were retrieved and their coordinates were extracted using the bio3D R package (Grant et 

al., 2006).  Pairwise sequence alignments for mapping were performed using Biostrings 

[Pages H, Aboyoun P, Gentleman R and DebRoy S. Biostrings: String objects representing 

biological sequences, and matching algorithms. R package version 2.34.1.].  

 

2.2.3 Methods for analysing correlated mutations 

Early methods for CMA relied on the assumption that pairs of positions are statistically 

independent of other positions with respect to their amino acid frequencies (Göbel et al., 

1994) (Dunn et al., 2008; Gloor et al., 2005; Kass and Horovitz, 2002). These methods do 

not take into account transitive correlations (chaining effect) and, to a certain extent, 

conserved positions (Fodor and Aldrich, 2004) and, consequently, result in many 

inaccurate predictions.   By contrast, methods that were developed more recently (Baldassi 

http://www.rcsb.org/pdb/rest/hmmer?file=hmmer_pdb_all.txt
ftp://ftp.ebi.ac.uk/pub/databases/msd/sifts/text/pdb_chain_uniprot.lst
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et al., 2014; Feizi et al., 2013; Jones et al., 2012, 2015; Kamisetty et al., 2013; Marks et al., 

2011; Morcos et al., 2011; Weigt et al., 2009) consider the amino acid frequencies at a pair 

of positions to be dependent on the frequencies at all other positions, thereby reducing 

noise due to transitivity (Figure 2.5) and introducing a substantial improvement relative to 

the earlier methods (Figure 2.6). Nevertheless, recent methods require more extensive 

computations. In this thesis, both the early and more powerful recently developed contact 

prediction methods were examined. 

 

Figure 2.5 Transitivity (indirect) effects in protein contact prediction. 

Transitivity occurs when correlations due to direct (causative) interactions between 

residues A and B, A and D, and residues D and C result in a transitive correlation between 

residues B and C. Transitive correlations can be stronger than causative correlations if, for 

example, two non-interacting residues have many common neighbors. This figure is taken 

from previous work of others (Marks et al., 2012). 
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Figure 2.6 Protein contact prediction by representative early and recent methods. 

Protein contact prediction for the human Ras protein family using the early mutual 

information (MI) method and the more recent maximum entropy-based direct information 

(DI or DCA) methods (blue and red, respectively). The 150 predicted contacts with highest 

score obtained from both methods are shown in the protein contact map (in gray) derived 

from the experimentally determined structure of Ras. This figure is taken from previous 

work of others (Stein et al., 2015). 
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2.2.3.1 Early methods 

2.2.3.1.1 The OMES method 

The score for a pair of positions i and j, S (i,j), for the OMES (Observed Minus Expected 

Squared) method is calculated, as follows (Fodor and Aldrich, 2004; Kass and Horovitz, 

2002):  

𝑆𝑂𝑀𝐸𝑆(𝑖, 𝑗) =  ∑ ∑
(𝑂𝐵𝑆𝑎𝑖𝑏𝑗−𝐸𝑋𝑃𝑎𝑖𝑏𝑗)

2

𝑁𝑣𝑎𝑙𝑖𝑑
𝑏𝑎 , 

where 𝑂𝐵𝑆𝑎𝑖𝑏𝑗 and 𝐸𝑋𝑃𝑎𝑖𝑏𝑗 are the respective observed and expected number of sequences 

in the MSA with residue type a at position i and residue type b at position j. 𝑁𝑣𝑎𝑙𝑖𝑑 is the 

number of sequences in the alignment that have non-gapped residues at both i and j 

positions. Since gaps are excluded from the Pfam HMM based MSA before analysis (see 

details in the source code at https://github.com/etaijacob/CMA), 𝑁𝑣𝑎𝑙𝑖𝑑 = 1. 

2.2.3.1.2 The MI method 

Mutual information, MI, measures the reduction of uncertainty of one position given the 

information for the other (Cover and Thomas, 2005). MI can be viewed as the degree of 

correlation between two positions. The score for the MI method is calculated as follows 

(Gloor et al., 2005): 

𝑆𝑀𝐼(𝑖, 𝑗) =  ∑∑𝑓(𝑖,𝑎;𝑗,𝑏)

21

𝑏=1

21

𝑎=1

 𝑙𝑜𝑔
𝑓(𝑖,𝑎;𝑗,𝑏)

𝑓(𝑖,𝑎)𝑓(𝑗,𝑏)
 

where f(i,a) and f(j,b) denote the respective frequencies of occurrence of residue type a at 

position i and residue type b at position j and f(i,a; j,b) denotes the joint probability of 

occurrence of residue type a at position i and type b at position j.   

2.2.3.1.3 Correction for phylogenetic background and entropic noise 

Further improvements to MI, OMES and other methods can be done using correction 

methods that take into account the phylogenetic and entropic bias in the sequence family. 

Entropic noise originates from insufficient sequences in the MSA for adequate sampling 

of all residue types. Phylogenetic background refers to correlations due to the pattern of 

the underlying evolutionary tree. The correction method used in my analyses called average 

product correction (APC) is based on the assumption that each position in a MSA may have 

a propensity for a specific background signal Mb, which relates to its entropy and 

https://github.com/etaijacob/CMA
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phylogenetic history. The background Mb for any two positions can be approximated by 

the product of their propensities (Dunn et al., 2008). In the case of MI, an average product 

correction (APC) term is subtracted from the MI score for each pair of positions (the MI 

method including the APC correction is called MIp).  The APC term, which is a measure 

of the background MI shared by positions i and j, is given by: 

𝐴𝑃𝐶(𝑖, 𝑗) =   
𝑀𝐼(𝑖,𝑥̅)𝑀𝐼(𝑗,𝑥̅)

𝑀𝐼̅̅ ̅̅
, 

where the terms in the nominator are the respective average MI values of positions i and j 

with all other positions in the alignment and the term in the denominator is the average 

background MI of all the positions in the alignment.  The MIp score is given by: 

 𝑆𝑀𝐼𝑝(𝑖, 𝑗) =  𝑆𝑀𝐼(𝑖, 𝑗) − 𝐴𝑃𝐶(𝑖, 𝑗) 
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2.2.3.2 Recent methods 

2.2.3.2.1 Introduction to recent methods 

Multivariate statistical methods (Balakrishnan et al., 2011; Ekeberg et al., 2013; Jones et 

al., 2012; Kamisetty et al., 2013; Morcos et al., 2011)and other recently developed methods 

(Feizi et al., 2013) are able to remove noise originated from transitivity and, thus, detect 

direct contacts more accurately than earlier methods.  Employing these methods has 

become possible also because of the enormous increase in the number of sequences (i.e. a 

larger sample size) and the availability of more computing resources over the years. The 

first method developed, Direct Coupling Analysis (DCA or DI for direct information), was 

implemented using the message passing algorithm (Weigt et al., 2009), a computationally 

intense procedure that required a long time to complete a prediction for a very small 

number of pairs of positions (~4 days for 60 contacts on a single CPU). A significant 

breakthrough in the approximation method, which drastically reduces the computation time 

(Morcos et al., 2011), was introduced 2 years later. Other methods were also developed 

that include Protein Sparse Inverse COVariance (PSICOV) (Jones et al., 2012, 2015), a 

Bayesian network algorithm (Burger and van Nimwegen, 2010), Gremlin's pseudo-

likelihood method (Kamisetty et al., 2013), the pseudo-likelihood maximization DCA 

(plmDCA) method (Ekeberg et al., 2013) and a network deconvolution approach based on 

spectral decomposition of the correlation matrix (Feizi et al., 2013). Here, I describe in 

more detail the two methods, DCA and PSICOV, which were chosen to assess our 

approach. 

2.2.3.2.2 The Direct Coupling Analysis (DCA) method 

2.2.3.2.2.1 Description of the DCA method  

By contrast with the early methods, frequency counts in DCA are reweighted in order to 

avoid overrepresentation of similar sequences in the analysis. The weight of each sequence, 

a, is determined by its similarity to all the other sequences in the MSA. The weight 
1

𝑚𝑎
 of 

sequence a is given by: 

𝑚𝑎 =∑𝐼(𝑎, 𝑠𝑖)

𝑀

𝑖=1

, 

where 𝑠𝑖 is the sequence in row i in the MSA with M sequences and 𝐼(𝑎, 𝑏)equals 1 if the 

sequence similarity between a and 𝑠𝑖 is greateror equal to0.8 and 0 if otherwise. Note that 
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using a threshold of 1 instead of 0.8, would reweight each sequence by the number of 

times it appears in the MSA, thus removing simple sequence repeats. The effective 

number of independent sequences is defined here for later use by: 

𝑀𝑒𝑓𝑓 = ∑
1

𝑚𝑎

𝑀
𝑎=1 . 

In order to reweight the contribution of each sequence to the total frequency counts 

according to its similarity to other sequences, the marginal and joint frequency counts are 

calculated as follows: 

𝑓𝑖(𝐴) =
1

𝜆+𝑀𝑒𝑓𝑓
(
𝜆

𝑞
+ ∑

1

𝑚𝑎
𝛿𝐴,𝐴𝑖

𝑎
𝑀
𝑎=1 ), 

𝑓𝑖𝑗(𝐴, 𝐵) =
1

𝜆+𝑀𝑒𝑓𝑓
(
𝜆

𝑞2
+ ∑

1

𝑚𝑎
𝛿𝐴,𝐴𝑖

𝑎
𝑀
𝑎=1 𝛿𝐵,𝐴𝑗

𝑎). 

Where in the amino acid analysis A and B designate amino acid types and q equals 21. 𝐴𝑖
𝑎 

and 𝐴𝑗
𝑎designate the amino acid type at specific position i or j in sequence a for 𝑖, 𝑗 =

1, … , 𝐿, where L is the sequence length. In the codon analysis case, A and B designate 

codon type and q equals 65, and 𝐴𝑖
𝑎 and 𝐴𝑗

𝑎designate the codon types. δ denotes the 

Kronecker symbol, which equals one if the two indices agree and zero if otherwise. λ is the 

pseudo-count which is equal here to 𝑀𝑒𝑓𝑓 and will be discussed in the next paragraph. 

Thus, for example, if a group of 50 out of 100 sequences in a given MSA has a sequence 

similarity of more than 80% among all group members, each of these members will 

contribute 1/50 of its original count for the frequency calculations.  

DCA uses the inverse covariance matrix (defined below) to predict direct coupling. 

In order to ensure that the covariance matrix is invertible (that is, the probability 

distribution is unique), a pseudo-count, λ, is used for regularization of the above frequency 

counts (Neher, 1994) for finite sample effect. In the extreme cases, the pseudo-count 

prevents counts from being equal to zero when there are not enough sequences in the MSA 

(i.e. finite sample effect) to sample all possible amino acids or codon pair combinations. 

For example, if in a given MSA there is not a single observation that accounts for the joint 

occurrence of arginine in column i and lysine in column j, instead of having a frequency 

count of zero, it will have a value of 

1

𝜆+𝑀𝑒𝑓𝑓

𝜆

𝑞2
=

1

2𝑀𝑒𝑓𝑓

𝑀𝑒𝑓𝑓

𝑞2
=

1

2𝑞2
, 

following the pseudo-count addition. 

The covariance matrix is: 

𝐶𝑖𝑗(𝐴, 𝐵) = 𝑓𝑖𝑗(𝐴, 𝐵) − 𝑓𝑖(𝐴)𝑓𝑗(𝐵), 
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and the coupling strength between amino acid types A and B, or codon types in the case of 

codon analysis, at positions i and j, respectively, denoted as 𝑒𝑖𝑗(𝐴, 𝐵), is approximated by 

𝑒𝑖𝑗(𝐴, 𝐵) ≃ −(𝐶
−1(𝐴, 𝐵))

𝑖𝑗
. 

Let us define 𝐻𝑖𝑗, which can be interpreted as the Hamiltonian of positions i and j 

corresponding to the total coupling energy, 𝑒𝑖𝑗(𝐴, 𝐵), and the local fields, ℎ𝑖(𝐴) and 

ℎ𝑗(𝐵). 

𝐻𝑖𝑗 = −(𝑒𝑖𝑗(𝐴, 𝐵) + ℎ𝑖(𝐴) + ℎ𝑗(𝐵)). 

The direct coupling is therefore,  

𝑃𝑖𝑗
𝑑𝑖𝑟(𝐴, 𝐵) =

1

𝑍𝑖𝑗
𝑒𝑥𝑝(−𝐻𝑖𝑗), 

where𝑍𝑖𝑗 is the partition function (i.e. the normalizing constant). The local fields, ℎ𝑖(𝐴) 

and ℎ𝑗(𝐵), are determined for each pair A and B at positions i and j, respectively, by 

adjusting the marginal distributions of  𝑃𝑖𝑗
𝑑𝑖𝑟(𝐴, 𝐵) to the reweighted frequency counts 

defined above, 𝑓𝑖(𝐴) and 𝑓𝑗(𝐵), as follows: 

𝑓𝑖(𝐴) = ∑ 𝑃𝑖𝑗
𝑑𝑖𝑟(𝐴, 𝐵)𝐵 and 𝑓𝑗(𝐵) = ∑ 𝑃𝑖𝑗

𝑑𝑖𝑟(𝐴, 𝐵)𝐴 . 

𝑃𝑖𝑗
𝑑𝑖𝑟, like the Boltzmann distribution, shows that coupling with lower energy will always 

have a higher probability than coupling with a higher energy. 

Finally, the direct information formula is similar to the MI’s, except for the joint 

frequency counts, 𝑓𝑖𝑗, that were replaced by the direct coupling, 𝑃𝑖𝑗
𝑑𝑖𝑟. Therefore, 

𝐷𝐼𝑖𝑗 = ∑ 𝑃𝑖𝑗
𝑑𝑖𝑟(𝐴, 𝐵)𝐴,𝐵 𝑙𝑛 (

𝑃𝑖𝑗
𝑑𝑖𝑟(𝐴,𝐵)

𝑓𝑖(𝐴)𝑓𝑗(𝐵)
), 

 

2.2.3.2.2.2 DCA Model formulation for continuous random variables  

Recall that the model of the DCA method is defined by the following distribution 

function:  

𝑃(𝐴1, … , 𝐴𝑁) =
1

𝑍
𝑒𝑥𝑝(∑𝑒𝑖𝑗(𝐴𝑖, 𝐴𝑗

𝑖<𝑗

) +∑ℎ𝑖(𝐴𝑖)

𝑖

) 

Given that the aligned protein data are limited, many different probability distributions can 

be consistent with it and the choice is made by finding the probability distribution that both 

satisfies the constraints of marginal and joint frequencies and maximizes the entropy. For 

simplicity, I describe here how the model is derived by satisfying those constraints for the 

case of continuous random variable but it is equivalent to that used in the DCA procedure.  
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Let 𝑋 = (𝑥1, … , 𝑥𝐿)
𝑇 ∈ ℝ𝐿 be a multivariate random variable. We require that the 

model will maximize the entropy 

𝑆 = −∫ 𝑃(𝑋)𝑙𝑛𝑃(𝑋)𝑑𝑋
𝑋

, 

and simultaneously meet the following constraints:  

The first natural requirement for a probability distribution is that its integral equals one: 

∫ 𝑃(𝑋)𝑑𝑋 = 1
𝑋

 

The second constraint is that the first moment of variable 𝑥𝑖, 〈𝑥𝑖〉, should be equal to 

sample mean over M sequences in the MSA in each 𝑖 = 1,… , 𝐿, 

〈𝑥𝑖〉 = ∫ 𝑃(𝑋)𝑥𝑖𝑑𝑋 =
1

𝑀
∑ 𝑥𝑖

𝑚

𝑀

𝑚=1

= 𝑥𝑖
𝑋

 

Equivalently, the third constraint requires that the second moment of the variables  𝑥𝑖 

and  𝑥𝑗, 〈𝑥𝑖 𝑥𝑗〉, should be equal to its corresponding empirical expectation, 

〈𝑥𝑖𝑥𝑗〉 = ∫ 𝑃(𝑋)𝑥𝑖𝑥𝑗𝑑𝑋 =
1

𝑀
∑ 𝑥𝑖

𝑚𝑥𝑗
𝑚

𝑀

𝑚=1

= 𝑥𝑖𝑥𝑗
𝑋

 

Finding the maximum of function S subject to the above three constraints is done using the 

method of Lagrange multipliers (Mead and Papanicolaou, 1984; Stein et al., 2015). With 

the Lagrange multipliers 𝛼, 𝛽 = (𝛽𝑖)𝑖=1,…,𝐿 and 𝛾 = (𝛾𝑖)𝑖=1,…,𝐿 corresponding to the first, 

second and third constraints respectively, the Lagrangian ℒ = ℒ(𝑃(𝑋); 𝛼, 𝛽, 𝛾) is defined 

as, 

ℒ = 𝑆 + 𝛼(〈1〉 − 1) +∑𝛽𝑖(〈𝑥𝑖〉 − 𝑥𝑖)

𝐿

𝑖=1

+∑𝛾𝑖𝑗(〈𝑥𝑖𝑥𝑗〉 − 𝑥𝑖𝑥𝑗)

𝐿

𝑖=1

 

The maximum is then obtained by setting the derivative of  to zero with respect to the 

unknown density 𝑃(𝑋), given the definitions of the first and second moments above, 

𝑑ℒ

𝑑𝑃(𝑋)
= 0

𝑦𝑖𝑒𝑙𝑑𝑠
→    −𝑙𝑛𝑃(𝑥) − 1 + 𝛼 +∑𝛽𝑖

𝐿

𝑖=1

𝑥𝑖 +∑𝛾𝑖𝑗

𝐿

𝑖=1

𝑥𝑖𝑥𝑗 = 0 

The solution is therefore the Boltzmann distribution, 

𝑃(𝑋; 𝛽, 𝛾) = exp (−1 + 𝛼 + ∑ 𝛽𝑖
𝐿
𝑖=1 𝑥𝑖 + ∑ 𝛾𝑖𝑗

𝐿
𝑖=1 𝑥𝑖𝑥𝑗)= 

1

𝑍
𝑒𝑥𝑝 {−(∑𝛽𝑖

𝐿

𝑖=1

𝑥𝑖 −∑𝛾𝑖𝑗

𝐿

𝑖=1

𝑥𝑖𝑥𝑗)} 
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With the normalization constant (also called the partition function) derived from the first 

constrained, 

𝑍(𝛽, 𝛾) ∶= ∫ 𝑒𝑥𝑝 (∑𝛽𝑖

𝐿

𝑖=1

𝑥𝑖 +∑𝛾𝑖𝑗

𝐿

𝑖=1

𝑥𝑖𝑥𝑗)
𝑥

𝑑𝑥 ≡ exp (1 − 𝛼) 

The determining parameters of the probability distribution above, the Lagrange 

multipliers β and γ, that are equivalent to the coupling parameter, 𝑒𝑖𝑗(𝜎, 𝜔), and ℎ̃𝑖(𝜎) 

and ℎ̃𝑗(𝜔) from the 𝑃𝑖𝑗
𝑑𝑖𝑟 formula described earlier, can be estimated from the closed-

form solution in the case described here for the continuous variable model. In general, 

the Lagrange multipliers β and γ can be specified in terms of the empirical mean and the 

inverse covariance matrix, which is determined from the empirical correlation matrix, 

𝐶𝑖𝑗
(𝑒𝑚𝑝)(𝑥𝑖, 𝑥𝑗) = 𝑓𝑖𝑗(𝑥𝑖, 𝑥𝑗) − 𝑓𝑖(𝑥𝑖)𝑓𝑗(𝑥𝑗). 

Consequently, the maximum entropy distribution for the empirical first and second 

moments is found to be the multivariate Gaussian distribution. Further details can be found 

in (Morcos et al., 2011; Stein et al., 2015). The same numerical solution is obtained for the 

categorical variable using the mean-field approximation on the truncated Taylor series 

(Baldassi et al., 2014; Morcos et al., 2011).  
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2.2.3.2.2.3 Extension of categorical variables to binary representation 

Furthermore, the categorical variables as represented in the MSA, can be extended using a 

binary representation (see figure 2.7) to a continuous one, with the advantage of the 

analytical framework (Baldassi et al., 2014; Stein et al., 2015). 

 

 

Figure 2.7 Illustration of binary translation of a categorical representation of amino 

acids. 

The binary translation, Ω → {0,1}𝐿𝑞, maps each vector ofcategorical random variables, 𝑋 ∈
Ω𝐿, here represented by a sequence of amino acids from the amino acid alphabet, Ω = {A, 

C, D, E, F, G, H, I, K, L, M, N, P, Q, R,S, T, V,W, Y,−}, onto a unique binary 

representation, 𝑋(𝜎) ∈ {0,1}𝐿𝑞. This figure is taken from previous work of others  (Stein 

et al., 2015).  
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2.2.3.2.3 The PSICOV method  

PSICOV is based on the sparse inverse covariance technique (Meinshausen and Bühlmann, 

2006) and estimates the coupling effect between two positions in the protein based on  the 

MSA of its related family members. As the DCA method, PSICOV method aims to correct 

for transitivity and also uses in its recipe the inverse covariance matrix (see description in 

the global model introduction above). As described above, given the observed marginal 

frequencies,  

𝑓𝑖(𝐴) =
1

𝑀
∑ 𝛿𝐴,𝐴𝑖

𝑎
𝑀
𝑎=1 , 

𝑓𝑖𝑗(𝐴, 𝐵) =
1

𝑀
∑ 𝛿𝐴,𝐴𝑖

𝑎
𝑀
𝑎=1 𝛿𝐵,𝐴𝑗

𝑎, 

with1 ≤ 𝑖, 𝑗 ≤ 𝐿, 1 ≤ 𝐴, 𝐵 ≤ 𝑞 and δ denoting the Kronecker symbol, which equals one if 

the two indices agree and zero otherwise. The empirical covariance matrix is then, 

𝐶𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = 𝑓𝑖𝑗(𝑥𝑖, 𝑥𝑗) − 𝑓𝑖(𝑥𝑖)𝑓𝑗(𝑥𝑗). 

Assuming that the underlying distribution of the data is multivariate Gaussian, in the 

inverse covariance matrix, 𝐶−1, the element 𝐶−1𝑖𝑗 represents the covariance between the 

residuals resulting from a regression of i with all other positions and the residuals resulting 

from the regression of j with all other positions. Thus, the matrix of partial correlation 

coefficients for all pairs of positions can be obtained using the Pearson correlation 

coefficient as follows: 

𝜌𝑖𝑗 = −
𝐶−1𝑖𝑗

√𝐶−1𝑖𝑖𝐶−1𝑗𝑗
 

As stated earlier, the empirical covariance matrices of MSAs are singular because the 

number of observed variables is often smaller than the dimensionality of the problem. Since 

the matrix cannot be directly inverted, PSICOV method uses the sparse inverse covariance 

estimation. In general, protein contact maps are sparse since only about 3% of all residue 

pairs in a protein structure tend to have a direct contact. This method uses this expected 

sparsity (i.e. low number non-zero terms in the matrix) of the covariance matrix as a 

constraint on the obtained solution. The PSICOV method used in this thesis, is based on 

the graphical Lasso technique (Banerjee et al., 2008; Friedman et al., 2008). This method 

estimates the inverse covariance matrix, given S, the empirical covariance matrix with 𝑑 ×

𝑑 dimensions, by minimizing the objective function: 

𝑡𝑟𝑎𝑐𝑒(𝑆Θ) − 𝑙𝑜𝑔(𝑑𝑒𝑡Θ) + 𝜌 ∑|Θ𝑖𝑗|

𝑖,𝑗∈𝑑
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The third term is the regularization part, a type of a penalty (which is also called ℓ1 norm) 

that favors sparse solutions in the sense that many of the positive values in  will become 

zero during the minimization process.  

The norm of contacting residues i and j is the sum of the 20 × 20 absolute values in , 

corresponding to the 20 amino acid types observed in the alignment columns i and j: 

𝑆𝑖𝑗
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = ∑ |Θ𝑖𝑗

𝑎𝑏|𝑎𝑏 , 

for a and b amino acid types. 

 The score used for prediction is corrected for entropic and phylogenetic noise using the 

average product correction (APC), exactly as described above concerning the MI method: 

(𝑆𝑖𝑗
𝑐𝑜𝑛𝑡𝑎𝑐𝑡)

𝐴𝑃𝐶
= 𝑆𝑖𝑗

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 − 
𝑆(𝑖,𝑥̅)
𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑆(𝑗,𝑥̅)

𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑆𝑐𝑜𝑛𝑡𝑎𝑐𝑡
, 

where𝑆(𝑖,𝑥̅)
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 and 𝑆(𝑗,𝑥̅)

𝑐𝑜𝑛𝑡𝑎𝑐𝑡are the mean norm between column i and all other columns or 

column j and all other columns, respectively.  𝑆𝑐𝑜𝑛𝑡𝑎𝑐𝑡is the mean norm across whole MSA. 

In the implementation of PSICOV, as used in this thesis, additional standardization is done 

to this score for the final prediction output. 
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2.2.4 Contact definitions and performance evaluation 

2.2.4.1 Choosing contact definitions for the evaluation 

In order to assess the accuracy of contact predictions we must first decide which atom types 

and distance cutoffs will be used to define a contact (Yuan et al., 2012).  In CASP (Moult 

et al., 1995, 2011) and many other applications (Jones et al., 2012; Kamisetty et al., 2013) 

residues are defined as being in contact if the distance between their C atoms is ≤ 8 Å.  In 

several other applications (Baldassi et al., 2014; Morcos et al., 2011), a contact is assumed 

to exist if at least one inter-atomic distance between the residues is ≤ 8 Å. The former is 

referred here as the C-based definition and the latter as the “all” definition. A direct 

physical contact occurs when two heavy atoms of the respective amino acids are at a 

distance < 3.5 Å. We, therefore, examined which of the above two definitions is better at 

identifying such direct contacts. We then used the more accurate definition to assess the 

performance of CMA methods in contact prediction. The examination was performed on a 

compilation of a non-redundant set of thousands of proteins with an available crystal 

structure (next section describes the technical details of this analysis).  We determined the 

fraction of the amino acid pairs defined as contacts using the C-based definition or the 

“all” definition that are actually in direct physical contact (using the definition given 

above). This calculation was done separately for each protein. Direct physical contacts 

were found to comprise 30% of the interactions identified using the C-based definition 

and only 10% of the interactions identified using the “all” definition. We, therefore, 

considered the C-based definition to be better for our analysis (Figure 2.8).   

2.2.4.2 Procedure for determining physical contacts  

A non-redundant set of 2,481 PDB entries was downloaded from the CullPDB website 

(Wang and Dunbrack, 2003, 2005) at http://dunbrack.fccc.edu/Guoli/pisces_download.php 

on Feb. 25th, 2015.  The downloaded set was compiled based on the following properties: 

(i) a protein sequence identity cutoff of 20%; (ii) structures with an X-ray resolution higher 

than 1.6 Å; and (iii) an R-factor cutoff of 0.25.  For each protein, I identified the residue 

pairs in contact according to the “all” and C-based definitions. The fraction of residue 

pairs that are in a true physical contact (i.e. if they have at least one pair of atoms with a 

distance < 3.5 Å) was then calculated for each of these sets. Only pairs of residues that are 

separated by at least five amino acids along the protein sequence were considered.  

http://dunbrack.fccc.edu/Guoli/pisces_download.php
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Figure 2.8 Histogram of the fractions of residue pairs in physical contact out of those 

considered to be in contact according to two widely used definitions. 

Residue pairs defined to be in contact if at least one inter-atomic distance between them is 

≤ 8 Å (designated ‘All’) or if the distance between their C atoms is ≤ 8 Å were identified 

in 2,481 proteins with high-resolution structures.  The fraction of these residue pairs that 

are in direct contact, i.e. with a distance < 3.5 Å between two of their respective heavy 

atoms, was then determined for each protein.  Only pairs of residues that are separated by 

at least five amino acids along the protein sequence were considered.   

2.2.4.3 Evaluation of prediction accuracy 

The evaluation was based on the all structures with the highest resolution (at least 3 Å) but, 

in cases where families have more than 30 known structures with unique sequences, only 

the 30 with the best resolution were used (in cases of structures with the same resolution 

we arbitrarily chose one).  The average accuracy of contact predictions for all the crystal 

structures of each domain family was then calculated so that domain families with many 
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crystal structures would not be over-represented. Accuracy was calculated as the 

proportion of true contacts from the N pairs with the highest score in that set.  We evaluated 

the improvement of our method using the difference in the area under the curve (AUC) of 

the accuracy vs. number of predicted pairs of our method relative to the results of the 

original OMES, MI, MIp, PSICOV and DCA methods. AUC was calculated using the auc 

function in MESS package in R with the default parameters. 

2.2.5 Contact prediction implementation 

The Direct Coupling Analysis (DCA) method (Morcos et al., 2011) was implemented and 

optimized in R and C for amino acid and codon MSAs based on a Matlab source code 

provided by Weigt et al. (http://dca.rice.edu/portal/dca/download). The PSICOV code was 

downloaded from http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/ and used for the 

predictions based on amino acid MSAs with the default parameters for faster options as 

recommended by the authors (-p -r 0.001 and with the -l option in order to avoid using the 

APC term).  The PSICOV code was modified in order to carry out the same analysis for 

codon MSAs and a python script was implemented to perform the whole analysis as done 

for the other methods using Pfam MSA files in Stockholm format and fasta MSA files as 

inputs.  PSICOV was used here either with the APC for amino acid MSAs or without the 

APC for the predictions based on both amino acid and codon MSAs. 

2.2.5.1 Available software for CMA analysis 

The R and Python source codes for the contact prediction by all methods, C source code 

modifications to PSICOV V2.1b3, R source code for structure-domain sequence mapping 

and python scripts for generating codon MSAs are available at https://etaijacob.github.io/.  

Details on the relevant R packages that will be available on CRAN will also be provided 

at: https://etaijacob.github.io/. 

2.2.6 Other applications using codon information - Deleterious SNPs 
prediction 

2.2.6.1 SNPs Datasets collection 

Several methods for predicting damaging SNPs were successfully developed over the 

years. One of the best performing methods is PolyPhen-2, which is based on a 

classification method that uses two different datasets for training and testing 

http://dca.rice.edu/portal/dca/download
http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/
https://etaijacob.github.io/
https://etaijacob.github.io/
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(http://genetics.bwh.harvard.edu/pph2/dokuwiki/_media/nmeth0410-248.pdf). Here, I 

used these two datasets to train and test a new classifier for this purpose. In order to assess 

if combining codon information with other features improves the performance of 

deleterious SNP prediction, I built a new classifier which uses both amino acid and codon 

information. One dataset used was HumDiv, which is compiled from all 3,155 damaging 

alleles annotated in the UniProt database as causing human Mendelian diseases and 

affecting protein stability or function.  This dataset also includes 6321 non-damaging 

SNPs defined here as positions at which there is a difference between the human protein 

and its closely related mammalian homologs. The second dataset, HumVar, consists of all 

the 13,032 human disease-causing mutations from UniProt. This dataset also includes 

8,946 human nonsynonymous single-nucleotide polymorphisms (nsSNPs) without 

annotated involvement in disease, which were treated as non-damaging.  

2.2.6.2 Generation of independent variables for the prediction  

The evolutionary conservation at the position of a SNP in a protein was used as the 

independent variable for predicting whether it is deleterious or not. I estimated such 

conservation by calculating the entropy at the SNP’s location in the multiple sequence 

alignment of that protein and its homologs. Calculations were restricted to SNPs that are 

located within domain regions of Pfam families in proteins. Therefore, families from the 

Pfam database (RP75 redundancy level and Pfam version 27) that included a protein 

member with an indicated SNP in its domain region, were those considered in the analysis. 

This resulted in 1005 MSAs of different domains with mapped SNPs. The transcripts for 

the codon based MSAs were collected based on Uniprot cross reference annotations (for 

Refseq, Ensemble, EMBL and Ensembelgenomes databases) and aligned in accordance 

to the proteins MSAs using tranalign software tool. The entropy for each mapped SNP for 

the proteins MSAs and the transcripts MSAs was calculated for all SNPs positions with 

less than 50% gaps in the alignment. In order to include in the same analysis the entropy 

measurements of SNPs from different domains with MSAs of different size and 

compositions, each entropy value was standardized (that is, centered by the mean and 

scaled by the standard deviation of the entropy values). 

2.2.6.3 Prediction model 

I used multivariate logistic regression to estimate the probability of an SNP to be 

damaging or non-damaging (i.e. a binary response) from the entropy calculations (i.e. 

http://genetics.bwh.harvard.edu/pph2/dokuwiki/_media/nmeth0410-248.pdf
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independent variables) of the amino acid and codon MSAs.  The regression model is 

defined as follows: 

Let Y be the probability for a SNP to be damaging. The multiple logistic regression is 

defined as follows:  

ln (
𝑌

(1 − 𝑌)
) = 𝑎 + 𝑏1𝑍𝑠𝑐𝑜𝑟𝑒(𝐻(𝐴𝐴)) + 𝑏2𝑍𝑠𝑐𝑜𝑟𝑒(𝐻(𝐶)) 

where 
𝑌

(1−𝑌)
  is the odds ratio of a SNP to be damaging compared to non-damaging, 𝐻(𝐴𝐴) 

and 𝐻(𝐶) are the conservation scores based on the amino acid and codon sequences, 

respectively, and 𝑍𝑠𝑐𝑜𝑟𝑒 indicates the  standardization function.  

The logistic regression coefficients, 𝑏1 and 𝑏2 can be used to interpret the relation 

between the codon and the amino acid based independent variables. Performance 

evaluation consists of data divided into two equally sized sets: test and learning (i.e. two-

fold cross validation). 
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2.3 Results 

2.3.1 The rationale of the method 

The key premise underlying the method introduced in this thesis is that a correlation at the 

amino acid level between two positions is more likely to reflect a direct interaction if the 

correlation at the codon level for these positions is weak (Figure 2.2).  In other words, it is 

assumed that cases of strong correlations at both the amino acid and codon levels for a pair 

of positions are less likely to reflect selection to conserve protein contacts and more likely 

to reflect selection to conserve interactions involving DNA or RNA and/or common 

ancestry.  Given this rationale in mind, we decided to test whether contact identification 

improves when all the pairs of positions are ranked using a score that increases with (i) 

increasing strength of the correlation at the amino acid level and (ii) decreasing strength of 

the correlation at the codon level.  Such a score, Si, is given, for example, by: 

Si = Si
(aa)/Si(c), 

where Si(aa) and Si(c) are the scores generated by method i (e.g. MI) for the amino acid 

and codon alignments, respectively, and the value of the power  is determined empirically 

depending on the method (see below). 

2.3.2 Performance analysis and comparison 

Our approach was tested for the OMES (Kass and Horovitz, 2002), MI (Gloor et al., 2005), 

MIp (Dunn et al., 2008) and DCA (Marks et al., 2011; Morcos et al., 2011) methods using 

114 MSAs each comprising at least 2000 sequences of length between 200 and 500 

residues.  In the case of the PSICOV method (Jones et al., 2012), only 86 MSAs out of the 

114 MSAs were used since the others didn’t pass this method’s threshold for amino acid 

sequence diversity.  Each MSA also included at least one sequence with a known crystal 

structure at a resolution < 3 Å in which at least 80% of all the residues are resolved.  The 

mean accuracy of contact identification was plotted as a function of the top ranked number 

of predicted pairwise contacts (Figure 2.10) or as a function of the top ranked fraction of 

protein length, L (Figure 2.9).  Residues were considered as being in contact if the distance 

between their C atoms is ≤ 8 Å following the definition used in CASP experiments 

(Ezkurdia et al., 2009) and other studies (Kamisetty et al., 2013; Skwark et al., 2014) (see 

also Figure 9).  The results show that the PSICOV and DCA methods outperform the 
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OMES, MI and MIp methods (Figure 2.9, 2.10) as established before (Mao et al., 2015).  

They also show that combining amino acid and codon data leads to an improvement in the 

predictions by OMES, MI, DCA and PSICOV.  In the case of MIp, however, no 

improvement was observed despite the fact that this method performs worse than DCA and 

PSICOV.  In MIp, a term called average product correction (APC) is subtracted from the 

MI score for each pair of positions in order to reduce false positives.  Removing this 

correction from PSICOV where it also exists and including the codon data yielded the best 

method (Figure 2.9, 2.10).  Hence, we can conclude that there is an overlap between the 

background noise reduced upon including the APC term and codon data and that including 

the latter can be more advantageous as we observe for PSICOV. 
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Figure 2.9 Plots of the mean accuracy of contact identification by various methods 

of correlated mutation analysis as a function of the top ranked fraction of protein 

length, L, number of predicted pairwise contacts. 

The mean accuracies of contact identification by the OMES, MI, MIp, DCA and PSICOV 

methods are shown either with or without incorporating codon data.  Residues were defined 

as being in contact if the distance between their C atoms is ≤ 8 Å.  PSICOV* indicates 

that it was carried out without the APC.  
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Figure 2.10 Plots of the mean accuracy of contact identification by various methods 

of correlated mutation analysis as a function of the top ranked number of predicted 

pairwise contacts. 

The mean accuracies of contact identification by PSICOV, DCA MIp, MI and OMES are 

shown either with or without incorporating codon data.  Residues were defined as being in 

contact if the distance between their C atoms is ≤ 8 Å.   

 

2.3.3 Method optimization 

The extent of improvement increases with increasing values of the power  until a 

maximum is reached (Figure 2.11A) at a value of  that depends on the method used and 

different values of max were, therefore, chosen accordingly.  Cross-validation by dividing 
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the MSA data into training and test sets showed that the values of max are stable, i.e. they 

do not vary depending on the set of MSAs (Figure 2.12).  Given these values of  max, the 

significance of the extent of improvement was assessed by comparing for each MSA the 

accuracy of the contact predictions using the different methods with and without 

incorporating codon data.  Significance levels were determined using two non-parametric 

tests: (i) the Wilcoxon signed-rank test, which takes into account both the number of MSAs 

for which the accuracy of the contact predictions increases upon incorporating codon data 

(e.g. 81 in the case of DCA) and the magnitude of the improvement; and (ii) the sign test, 

which only considers the number of MSAs with improved accuracy. The extent of 

improvement achieved by incorporating codon data was found to be highly significant as 

indicated by the P-values obtained using both tests (Figure 2.11B).  
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Figure 2.11 The effect of the relative weights of amino acid and codon information 

on contact prediction improvement and its statistical significance. 

(A) The median of the extent of improvement in contact prediction for 114 MSAs (86 in 

the case of PSICOV) is plotted as a function of the value of the power  which determines 

the relative weights of the amino acid and codon correlations in the score, Si (Si = 

Si
(aa)/Si(c), where Si(aa) and Si(c) are the respective amino acid and codon scores 

generated by method i).  The extent of improvement was determined by calculating the 

difference in the areas under the curves (AUC) of prediction accuracy vs. number of 

predictions for each method i with and without incorporation of the codon data normalized 

by the area under the curve generated without codon data.  The analysis was done for 

domains of length between 200 and 500 residues and at least 2000 coding sequences in 

their MSA.  The value of  which maximizes the median improvement was used for 

predictions.  Maximal respective improvements of 3.9% and 4.2% were found for DCA 

and MI when  is 2.5, 17.6% for OMES when  is 1.7 and 1.13% for PSICOV when  is 

11.2. (B) Stacked bar plots showing the number of MSAs for which including codon data 

improved the contact predictions using the different methods (orange) and the number of 

those for which it was otherwise (green). The statistical significance of the improvement 

achieved by incorporating codon data is indicated by the top and bottom P-values obtained 

using the Wilcoxon signed-rank and sign tests, respectively. 
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Figure 2.12 Testing the stability of the value of α by cross-validation. 

The MSA data set was divided into 10,000 different learning and test sets of equal size.  

The value of which produces the maximal median percent of AUC improvement in 

accuracy of contact prediction was obtained for each learning set and then used to assess 

the median percent of AUC improvement for the corresponding test set.  The distributions 

of the median percent of improvement obtained for the test sets are shown for OMES, MI, 

DCA and PSICOV.  The mean values of these test sets distributions obtained using the 

different methods are similar to those of their learning sets, thus, showing that the 

improvement is not due to over-fitting. In the case of OMES, MI and DCA, the mean 

difference between the values of  which maximizes the median of the percent of AUC 

improvement for the learning and test sets equals zero, thus, reflecting the stability of the 

values of .  In the case of PSICOV, the variance of that difference is high due to the 

asymptotic nature of the median percent of AUC improvement as a function of . 



43 

 

 

2.3.4 Performance analysis for different contact definitions 

The better success of DCA and other methods in identifying contacts according to the C-

based definition when amino acid and codon data are combined is an important result since 

as stated earlier, more pairs that are in true physical contact are identified in this way.  

Nevertheless, my finding that the C-based definition of contacts is better than the ‘All’ 

definition but still poor (only 30% of the pairs defined as being in contact are in physical 

contact) prompted me to test the performance of our method for additional contact 

definitions.  The mean of the extent of improvement in contact prediction for 114 domains 

(or 86 in the case of PSICOV) was, therefore, determined as a function of the distance that 

must exist between at least two C atoms in different residues in order for them to be 

defined as being in contact.  It may be seen that, in the cases of PSICOV, OMES and DCA, 

the maximum improvements in contact prediction upon combining amino acid and codon 

data are when these distances are about 5.5, 7 and 5.5 Å, respectively, and that, in the cases 

of DCA and OMES, the improvement decreases dramatically when this distance is >~10 

Å (Figure 2.13).  In the case of MI, the extent of improvement upon combining amino acid 

and codon data is found to be relatively insensitive to the distance used to define a contact 

and is maximal when it is ~4.5 Å (Figure 2.13).  These data, therefore, show again that the 

improvement in contact prediction upon combining amino acid and codon data is greatest 

when the distance used for contact definition does not lead to many pairs being defined in 

contact when in fact they are not in direct physical contact. 
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Figure 2.13 Improvement in contact prediction as a function of the distance used to 

define a physical contact. 

The mean of the extent of improvement in contact prediction for 114 domains (or 86 in the 

case of PSICOV) is plotted as a function of the distance that must exist between two C 

atoms in different residues in order for them to be defined as being in contact.  The extent 

of improvement was determined by calculating the difference in the areas under the curves 

of prediction accuracy vs. number of predictions by OMES, MI, DCA and PSICOV with 

and without incorporation of the codon data normalized by the area under the curve 

generated without codon data.  The analysis was done for domains of length between 200 

and 500 residues and at least 2000 coding sequences in their MSA.  The contact predictions 

were made for the seven sequences with available crystal structures that have the highest 

resolution and that in all cases is < 3 Å. 

2.3.5 Illustrative examples 

The added value in combining amino acid and codon data can be illustrated for contact 

prediction by DCA in the case of Kex1p, a prohormone-processing carboxypeptidase 

from Saccharomyces cerevisiae that lacks the acidic domain and membrane-spanning 

portion of Kex1p.  The crystal structure of Kex1p was solved at a resolution of 2.4 Å 
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(Shilton et al., 1997)and its MSA consists of 

1,877 sequences.  The predictions by DCA 

with or without incorporating codon data are 

shown in the respective top and bottom 

halves of the Kex1p contact map (Figure 

2.14A).  A comparison of the predictions by 

the two approaches shows that those made 

with incorporation of codon data are more 

long-range (in sequence) and more spread 

throughout the protein structure than those 

made without incorporation of codon data.  

Examples for such long-range contacts 

between different secondary structure 

elements in Kex1p that are predicted only 

when also the codon data is used include the 

interactions between Thr148 with Phe185, 

Ala186 with Leu208 and Leu190 with 

Leu368 (Figure 2.14B).  This and other 

examples (Figure 2.15) show that 

incorporation of codon data can yield 

predictions of contacts between residues that 

are distant in sequence and are, thus, of more 

value for structure prediction. 

 

 

Figure 2.14 Added value of combining 

amino acid and codon data in contact 

prediction by DCA illustrated for 

Kex1p. 

A prohormone-processing carboxypeptidase 

from S. cerevisiae. (A) Contact map of the 

structure of Kex1p(PDB ID: 1AC5) in 

which all the contacts are shown as gray 

rectangles.  Residues were defined as being 

in contact if at least one inter-atomic 

distance between their C atoms (Cα for 

glycine) is ≤ 8 Å.  The top 100 predicted 

contacts made with or without incorporating 
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codon data are highlighted above (in red) and below (in green) the diagonal, respectively, 

and those predicted by both methods by black circles. (B) The crystal structure of Kex1p 

with predicted contacts highlighted. Only true predicted contacts that were not predicted 

by the original method are highlighted. Each contacting pair has a different color.  The 

contacts were predicted using an MSA with 1,877 coding sequences with a length of 415 

codons.   

 

 

 
Figure 2.15 Illustration for four proteins of added value of combining amino acid 

and codon data in contact prediction by DCA. 

All the contacts are shown as gray rectangles.  Residues were defined as being in contact 

if at least one inter-atomic distance between their C atoms (Cα for glycine) is ≤ 8 Å.  The 

top 100 predicted contacts made with or without incorporating codon data are highlighted 

above (in red) and below (in green) the diagonal, respectively, and those predicted by both 

methods by black circles. 1BAG_A - contact map of the structure of alpha-amylase from 

Bacillus subtilis (Pfam id: PF00128).1Z63_A - contact map of the structure of 

Sulfolobussolfataricus SWI2/SNF2 ATPase core (Pfam id: PF00176). 1AQU_A - contact 

map of the structure of mouse estrogen sulphotransferase (Pfam id: PF00685). 1GW6_A - 

contact map of the structure of human leukotriene A4 hydrolase (Pfam id: PF01433). 
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2.3.6 The potential value of codon information in other applications 

The improvement in contact prediction when incorporating codon information in the 

analysis raised the question whether other applications in bioinformatics can benefit from 

it.  An interesting application that also uses amino acid information in the form of an MSA 

is predicting whether a single nucleotide polymorphism (SNPs) is deleterious or non-

deleterious. One example for such a method that was reported to perform well is Polyphen-

2 (Adzhubei et al., 2013, 2010). This method is based on a machine learning approach that 

includes in its model a large number of features comprising phylogenetic and structural 

information characterizing the substitution., Here, I tested whether a much simpler model, 

based only on amino acid and codon MSA data, would be adequate. Thus, by using the 

same learning and test sets used in the development of the Polyphen-2 method (HumDiv 

and HumVar, see details in the methods section), we were able to demonstrate that 

incorporation of codon information in the prediction model significantly improves the 

performance of the predictions (Figures 2.16 and 2.17). The performance on the HumDiv 

test set was improved from an AUC of the receiver operating characteristic (ROC) curve 

with a value of 0.69 (based on amino acid MSAs only) to an AUC value of 0.75 (based on 

a model which combines both amino acids and codon information). The same trend is 

observed for the HumVar database (Figures 2.16 and 2.17). 
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Figure 2.16 Performance evaluations of four different deleterious SNP predictors 

based on the HumDiv dataset. 

ROC curves are plotted based on 2-fold cross validation. See methods below for details of 

the features. An additional independent variable incorporated into the prediction model 

was the type of mutation designated in the figure legend as “change”. 
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Figure 2.17 Performance evaluations of four different deleterious SNP predictors 

based on the HumVar dataset. 

ROC curves are plotted based on 2-fold cross validation. See methods below for details of 

the features.  
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In the correlated mutations analysis, the amino acid and codon based scores had an opposite 

effects on the likelihood that a pair will have a physical contact. The same effect is observed 

when fitting a logistic regression model to the SNPs’ data sets described above. Here, the 

coefficients of the codon and amino acid entropies have opposite signs as follows:  

The fitted model based on HumDiv: 

𝐹(𝑥) =
1

1 + 𝑒−(−0.56+1.84𝐻(𝐴𝐴)−𝟎.𝟖𝟓𝑯(𝑪𝒐𝒅𝒐𝒏)+0.17𝐻(𝐴𝐴)𝐻(𝐶𝑜𝑑𝑜𝑛)
 

 
The fitted model based on HumVar: 

𝐹(𝑥) =
1

1 + 𝑒−(−1.06+1.35𝐻(𝐴𝐴)−𝟎.𝟓𝟏𝑯(𝑪𝒐𝒅𝒐𝒏)+0.15𝐻(𝐴𝐴)𝐻(𝐶𝑜𝑑𝑜𝑛)
 

 

where H is the entropy calculation for a SNP site in the MSA. 
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2.4 Summary 

I have shown that improved contact prediction can be achieved by analysing both amino 

acid and codon MSAs together.  The premise of my approach is that direct contacts are 

more likely to be present if the correlation at the amino acid level is high but at the codon 

level is low. Of particular importance, I find many cases where contacts between residues 

that are distant in sequence and, thus, of greatest value for structure prediction, are 

predicted only by using the combined method. It will be interesting to see whether our 

method succeeds better than other methods in contact prediction for a specific group of 

cases such as long proteins, long range interactions, inter-chain interactions and more. 

 With regards to other applications with which codon and amino acid information 

can be combined, I have shown that the prediction of deleterious SNPs can be improved 

using both codon and amino acid information. Interestingly, the opposite relations between 

amino acid and codon data also appeared in the regression model for the damaging SNP 

detection; a result that emphasizes the generality of my approach. 

2.5 Discussion  

2.5.1 False signals from phylogenetic bias and mRNA structures 

High correlation at the codon level can be a consequence of a phylogenetic bias, a signal 

that results from functionally related clusters of residues that co-evolve according to the 

structure of the underlying tree. In such cases, the driving force for co-variations are at the 

codon level and the resulting correlations at the amino acid level do not reflect a true 

physical contact. Alternatively, when the main factors are direct physical contacts, the 

effect will be at the amino acid level, and as long as the variations at the codon level remain 

synonymous, their impact will be negligible. This will result in a high correlation value at 

the amino acid level and low correlation at the codon level. 

Another factor that can influence the correlation values at the codon level, is the formation 

of mRNA secondary and tertiary structures (Katz and Burge, 2003). mRNA structures are 

widespread around coding regions (Mortimer et al., 2014; Wan et al., 2014) and in some 

cases are linked to translational regulation (Katz and Burge, 2003). In these cases, 

synonymous mutations can have a direct effect on the mRNA structure. One example for 

such a scenario is when a stable secondary structure protects the mRNA sequence from 

degradation. In this situation base pairing preservation in stem regions requires the 
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selection of nucleotides at synonymous sites (Katz and Burge, 2003). As a consequence, 

the correlation values at the codon level will be high and the correlation at the amino acid 

level will not reflect a true inter-residue contact. Therefore, a combined score as described 

here will detect that it is not a true contact. Another example concerns ribosome pausing 

and translation efficiency. The rate of translation in many proteins, which can greatly vary 

across transcripts, influences the protein folding pathway (Komar, 2009; Shah et al., 2013; 

Wolin and Walter, 1988). RNA structures can have a profound effect on translation rates, 

since a highly structured RNA region can cause ribosome pausing, which may facilitate 

the folding of individual domains (Figure 2.18) (Dana and Tuller, 2012; Meyer and Miklós, 

2005; Wen et al., 2008). The above two factors, phylogenetic bias and mRNA secondary 

and tertiary structure formation, are important sources of false signals that might be 

detected at the codon level, and when explicitly combined with the amino acid information, 

can significantly reduce false positive contact predictions.    
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Figure 2.18 Structure around start codons and translational efficiency. 

(a) Accessibility of the 5ʹ untranslated region (UTR) increases translation rate due to 

decreased structure in this region that allows efficient ribosome binding and start codon 

scanning. (b) The RNA folding energy of different segments of the coding region is 

associated with protein structure. The increased structure of these regions promotes 

ribosome pausing and assists in protein domain folding. The protein domains shown are 

Protein Data Bank identifiers 2GOL and 1A43. SHAPE, selective 2ʹ‑hydroxyl acylation 

analysed by primer extension. The figure and caption is taken from previous work of others  

(Mortimer et al., 2014). 
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2.5.2 Extensions and future work 

The score I propose can be used in conjunction with different methods of CMA; however, 

other possible scores or model refinements should be examined in future work. For 

example, a refinement of the combined score in this thesis could be done with additional 

data sources such as ribosome profiling, RNA secondary structure predictions, and more.  

 

As discussed earlier, the incorporation of codon information in contact prediction 

involves dividing the amino acid based score (generated by the CMA) by the codon based 

score. Therefore, two amino acids are more likely to be predicted in contact if their amino 

acid based score is high and their codon based score is low. Interestingly, in the regression 

model fitted for the deleterious SNP prediction, the predictors, i.e. the conservation scores 

based on the amino acid and the codon information also have opposite effects on the odds 

that a SNP will be damaging. This similarity in the relationship between codon and amino 

acid based scores in these two examples suggests that incorporation of codon information 

may have a wide range of applications. 

  

With regards to the regularization of a codon covariance matrix (pseudo-count 

weights of codons), it might be that additional optimizations could be done, as with regards 

to the underlying dependencies in the codon table. 

The potential of other applications  which combine amino acid and codon MSAs as 

part of their analysis should be tested, such as predicting protein-protein interactions 

and, more generally, in feature selection in machine learning. 
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Chapter 3 

3 A Mechanism for Prevention 
of Aggregation of 

Neighboring Domains 
 

3.1 Introduction  

Protein domains play a major role in evolution and are occasionally referred to as the 

building blocks of proteins. The term “domain” has been employed in different ways over 

the years. Here, it is defined as an evolutionary unit whose coding sequence (typically 

corresponding to 100-250 residues) can be duplicated or undergo recombination (Chothia et 

al., 2003).  In addition, domains usually have an independent function either alone or with 

other domains (Vogel et al., 2004) and a compact structure that folds independently (Figure 

3.1). Nearly half of all proteomes and more than 70% of all eukaryotic proteins are multi-

domain proteins. About 95% of multidomain proteins contain 2–5 domains and their 

combinations follow a power law distribution, i.e, a small number of domains recombine 

with many different partners whereas most domains are found only in combination with a 

few other partner domains (Han et al., 2007).  
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Figure 3.1 The role of domains as building blocks of proteins. 
Domains form different multi-domain proteins by duplication and recombination. Domains 

belonging to the same superfamily are represented as rectangles in the same color. Various 

domain combinations in a certain order (that is, supradomains) can form functional units 

that are reused in different protein contexts. This figure is taken from previous work of 

others  (Vogel et al., 2004). 
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In general, domains are classified into families based on sequence, structure or function. The 

expansion of the PDB in the mid-90’s, inspired the development of several protein domain 

classifications (Mizuguchi et al., 1998; Murzin et al., 1995; Orengo et al., 1997; Siddiqui et 

al., 2001) that are hierarchical. For instance, in a protein domain classification database 

called CATH, structures are first divided into their constituent domains and then classified 

at four major levels: (C)lass, (A)rchitecture, (T)opology or fold, and (H)omologous 

superfamily. SCOP, another domain classification database, employs similar categories 

(fold, superfamily, family and domain) with some differences in the classification process 

(Cuff et al., 2009) (Figure 3.2).  

 

 

Figure 3.2 Hierarchal classification of protein domain families. 

This figure is taken from previous work of others  (Han et al., 2007). 

 

The 3D structures of most proteins are not known and, therefore, using the structure-based 

assignment of a domain as described above (SCOP or CATH) is not possible and an 

alternative sequence-based domain definition is required. Pfam, the widely used database of 

protein families, (Finn et al., 2014; Punta et al., 2012) is a comprehensive source for domain 

families which is based on sequence alone. In this database, families are sets of regions in 

proteins that share a significant degree of sequence similarity (i.e. homologous sequences). 

A multiple sequence alignment (MSA) of each family of homologous sequences can be 

formed and turned into a position-specific scoring system based on a profile hidden Markov 

model (HMM). Then, the profile HMM, one for each protein family, can be used for 

searching sequence databases (e.g. UniprotKB) for remotely homologous sequences (Eddy, 
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1998). Similarities between sequences in Pfam are detected using HMMER3 software tool. 

Despite the fundamental difference between sequence-based and structure-based domain 

family databases, many of the former (that is, Pfam families) can be related to the latter (that 

is, SCOP families) (Pandit et al., 2002). Nevertheless, a significant difference in domain 

definitions between Pfam and SCOP and CATH is due to discontinuous domains (a 

discontinuous domain is one where the linear sequence of the domain is interrupted by 

another inserted domain) (Bateman et al., 2004). In this thesis, multidomain proteins are 

considered using both the sequence-based Pfam definition described above and the SCOP or 

CATH structural definitions (only consecutive domains are taken into account), depending 

on the type of analysis.  

Multi-domain proteins are potentially more aggregation-prone owing to the high 

effective protein concentration near each domain (Han et al., 2007). Aggregation of 

misfolded proteins is associated with many diseases such as Alzheimer’s disease and type 

II diabetes (Luheshi and Dobson, 2009; Selkoe, 2003).  Protein misfolding is also harmful 

to cells owing to the energetic costs involved in the synthesis and degradation of non-

functional proteins and the lack of folded protein molecules that may have essential 

functional roles (Figure 3.3). Hence, it is not surprising that evidence for strong selection 

against misfolding has been found in all kingdoms of life (Dill et al., 2011; Drummond and 

Wilke, 2008). Previous work has shown that selection against mis-folding is reflected in 

various correlations between measures of protein abundance and the probability of 

generating mis-folded proteins upon translation and folding (Drummond and Wilke, 2008; 

Tartaglia and Vendruscolo, 2009).  For example, it has been suggested that the observed 

correlation between protein abundance and optimal codon usage reflects selection against 

mis-folding (Drummond and Wilke, 2008). A similar explanation has been offered for the 

inverse correlation between mRNA expression levels and predicted protein aggregation 

propensities (Tartaglia and Vendruscolo, 2009). Preventing aggregation is particularly 

significant in the case of multi-domain proteins since as stated earlier, they account for 

nearly half of all proteomes (and more than 70% of all eukaryotic proteins) and are 

potentially more aggregation-prone owing to the high effective protein concentration near 

each domain (Han et al., 2007).  Mechanisms for preventing multidomain proteins from 

mis-folding are not yet fully understood (Borgia et al., 2011). One likely mechanism is co-

translational folding that can help to prevent aggregation of a newly synthesized domain 

with other domains in the same polypeptide chain that were synthesized first (Netzer and 

Hartl, 1997).  Domain-by-domain folding can also be facilitated by controlled domain-by-
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domain release from chaperones (Jacob et al., 2007; Rivenzon-Segal et al., 2005). 

Aggregation (not just of multi-domain proteins) can also be prevented by increasing 

folding rates and decreasing unfolding rates (Batey et al., 2006; Oberhauser et al., 1999) . 

Finally, it has been suggested that aggregation of multi-domain proteins is also minimized 

by selection for neighboring domains with low sequence identity (Wright et al., 2005).. In 

this thesis, I suggest a previously unrecognized mechanism for preventing aggregation 

which is based on protein length. 

 

 
Figure 3.3 Protein life time from synthesis to degradation. 

The figure describes the proteostasis network which integrates pathways for the folding of 

newly synthesized proteins, refolding of misfolded states and disaggregation with protein 

degradation mediated by the ubiquitin-proteasome system and the autophagy system. This 

figure is taken from previous work of others  (Hartl et al., 2011). 

 

Many properties of proteins depend on their chain length (Dill et al., 2011; 

Thirumalai et al., 2010). Protein folding rates, for example, are known to be inversely 

correlated with chain length. I found that there is a very significant tendency for N-terminal 

domains in double-domain proteins to be shorter than their neighboring C-terminal 

domains.  A possible  explanation for this observation, given the negative correlation 

between folding rates and protein length (Galzitskaya et al., 2003; Thirumalai et al., 2010), 

is that there is selection for N-terminal domains to fold faster than their C-terminal 
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counterparts.  In addition to protein length, folding rates have also been found to be 

inversely correlated with absolute contact order (ACO), i.e. the average separation in 

sequence between residues that are in contact in the folded structure (Galzitskaya et al., 

2003; Plaxco et al., 1998). Independent support for the existence of selection for faster 

folding N-terminal domains is, therefore, provided here by showing that the ACO values 

of N-terminal domains in two-domain proteins with available three-dimensional structures 

tend to be lower than those of their respective C-terminal neighbors. I, therefore, reasoned 

that if the bias for two-domain proteins with a faster folding N-terminal domain is due to 

selection against protein mis-folding then proteins with a shorter N-terminal domain should 

be more abundant than those with a shorter C-terminal domain as indeed I found to be the 

case.  Taken together, the findings presented in this thesis suggest the existence of a 

previously unrecognized mechanism for prevention of aggregation of neighboring 

domains. 

 

3.2 Methods 

3.2.1 Construction of datasets of two-domain proteins 

Pfam (Finn et al., 2014) domains sequence assignments (release 26.0) from Swissprot were 

downloaded from ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current_release/. Only protein 

sequences that were assigned two consecutive Pfam domains (each formed by a continuous 

sequence of 50 to 200 amino acids and connected by a linker that is shorter than 30 amino 

acids) with no additional nested or overlapping domain assignments were included in the 

database.  This dataset comprises 32,567 proteins from 3,995 different organisms.  

Evidence for existence at the protein level was taken from SwissProt annotations (UniProt 

Consortium, 2012) in the file downloaded from 

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/unipr

ot_sprot.fasta.gz and is available for 2,964 of these proteins.  A non-redundant set of 6,739 

two-domain proteins was created by intersecting our dataset of 32,567 proteins with that 

of UniRef (Suzek et al., 2007) that was downloaded from 

ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref50/uniref50.fasta.gz using a 

redundancy cutoff of 50%. 

ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current_release/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref50/uniref50.fasta.gz
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3.2.2 Contact order analysis 

Two databases of structural classification of proteins were used in the analysis: (i) version 

1.75A of SCOP (Andreeva et al., 2008; Murzin et al., 1995) that was downloaded from 

http://scop.berkeley.edu/astral; and (ii) version 3.4 of CATH (Orengo et al., 1997; Pearl, 

2003) that was downloaded from http://release.cathdb.info.  Only proteins that contain two 

domains belonging to the same family (the lowest level in the structural hierarchy as 

defined by CATH and SCOP) were included in the analysis.  In addition, I considered only 

proteins in which the length of each domain is between 50 and 300 residues and where the 

combined lengths of the two domains is > 80% of the length of the PDB entry and that the 

length of the linker is less than 30 amino acids.  In cases where different two-domain 

proteins contain the same domain, I required in order to avoid redundancy that the non-

shared domains differ in sequence by at least 5% (using other cutoffs did not alter the 

results).  This process yielded 454 entries for 174 domain families in SCOP and 1247 

entries (808 of which belong to the immunoglobulins) for 92 domain families in CATH.  

Data for families with more than one member were included in the analysis using their 

average so that large families (e.g. the immunoglobulins) would not be overrepresented. 

ACO was calculated as described (Galzitskaya et al., 2003; Plaxco et al., 1998) 

using the script downloaded from 

http://depts.washington.edu/bakerpg/contact_order/contactOrder.pl (written by Erik Alm).  

ACO is the average sequence separation between contacting residues in the native structure 

and is given by: 

    𝐴𝐶𝑂 =
1

𝑁
∑ ∆𝑆𝑖,𝑗𝑖,𝑗∈𝑁,𝑖>𝑗 , 

where N is the number of contacts in the native structure and jiS ,D is the number of amino 

acids between residues i and j that are in contact.  The relative contact order (RCO) is equal 

to ACO/L where L is the length of the protein.  

 

3.2.3 Protein abundance analysis 

Protein abundance analysis was carried out using data downloaded from http://pax-db.org 

(Wang et al., 2012b), release 2.1, for 1,699 two-domain proteins in the Pfam database from 

12 different organisms..  The abundance data is expressed as parts per million (ppm), 

i.e. the abundance of each protein is quantified relative to those of all other protein 

http://scop.berkeley.edu/astral
http://release.cathdb.info/
http://depts.washington.edu/bakerpg/contact_order/contactOrder.pl
http://pax-db.org/
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molecules in the sample.  Data for samples from different sources can, therefore, be 

compared.  

 

3.3 Results 

3.3.1 N-terminal domains in two-domain proteins tend to be shorter than C-
terminal domains 

Density plots generated for the chain lengths of N- and C-terminal domains in 2964 two-

domain proteins in the SwissProt database show a clear bias for N-terminal domains to be 

shorter than C-terminal domains (Figure 3.4A).  It is not possible, however, to determine 

from these plots to what extent, if any, the bias is influenced by domain pairing, i.e. the 

tendency of the N-terminal domain in two-domain proteins to be shorter than its 

neighboring C-terminal domain.  We, therefore, decided to compare the bias in the 2964 

real two-domain proteins with the biases in 10,000 sets of 2964 randomly chosen domain 

pairs generated by shuffling the N-terminal domains of the real proteins while keeping the 

C-terminal domains in place.  A histogram of these biases shows that the bias in the real 

two-domain proteins is significantly larger than in any of the sets of randomly generated 

domain pairs (Figure 3.4B).   This analysis shows that the domain pairing in real proteins 

increases the bias much beyond what is expected given that, in general, N-terminal domains 

tend to be shorter than C-terminal domains (Figure 3.4A).  In other words, there appears to 

be selective pressure for N-terminal domains in double-domain proteins to be shorter than 

their C-terminal counterparts.   
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Figure 3.4 Distribution of chain lengths of N- and C-terminal domains in two-domain 

proteins. 

(A) Density plots of the chain length distributions of N- (purple) and C-terminal (turquoise) 

domains in double-domain proteins shows that the tendency for C-terminal domains to be 

longer is significant with a Wilcoxon rank sum test (two sided) P-value of 8.3x10-8.  The 

analysis is based on 2964 two-domain proteins in the SwissProt database that (i) comprise 

domains of length between 50 to 200 amino acids connected by a linker that is shorter than 

30 amino acids and (ii) for which there is evidence at the protein level.  (B) Histogram 

showing the bias for shorter N-rerminal domains in real two-domain proteins and in two-

domain proteins comprising randomly chosen domain pairs generated by shuffling the N-

terminal domains of the real proteins while keeping the C-terminal domains in place.  The 

bias, which corresponds to the number of proteins with shorter N-terminal domains, nNt<Ct, 

divided by the the number of proteins with shorter C-terminal domains, nCt<Nt, was 

calculated for the 2964 real two-domain proteins (arrow) and for 10,000 sets of 2964 

randomly chosen domain pairs (gray bars). 

 

Next, we asked whether the bias seen in Figure 3.4A is general or limited to certain 

datasets.  The data in Table 3.1 show that the bias is found in both eukaryotic and 

prokaryotic proteins.  It is also seen when the analysis was carried out for all the Pfam 

entries in SwissProt and for the Uniref50 nonredundant prokaryotic, eukaryotic and 
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combined datasets.  Finally, the bias was also observed in datasets of proteins from very 

different organisms such as E. coli and fly.  The bias for N-terminal domains in two-domain 

proteins to be shorter than their C-terminal counterparts is, therefore, found to be 

ubiquitous but is stronger in prokaryotic proteins. 

 

Protein Data Set nNt<Ct nCt<Nt nNt<Ct/nCt<Nt 

All proteins for which there is evidence at protein level 1,757 1,116 1.57 

All eukaryotic proteins for which there is evidence at 

protein level 

1,139 739 1.54 

All prokaryotic proteins for which there is evidence at 

protein level 

521 311 1.68 

All Pfam entries in Swiss-Prot 18,763 13,198 1.42 

UniRef50 nonredundant set of proteins 3,747 2,871 1.31 

UniRef50 nonredundant set of eukaryotic proteins 1,220 1,016 1.20 

UniRef50 nonredundant set of prokaryotic proteins 2,148 1,599 1.34 

Representative Organisms 

Human (H. sapiens) 339 309 1.10 

Mouse (M. musculus) 298 280 1.06 

Arabidopsis thaliana 327 193 1.69 

Yeast (S. cerevisiae) 111 98 1.13 

Escherichia coli 166 100 1.66 

Fly (D. melanogaster) 54 34 1.59 

Worm (C. elegans) 78 59 1.32 

Methanocaldococcus jannaschii 59 37 1.59 

Table 3.1 Number of Two-Domain Proteins with Shorter N- or C-Terminal Domains 

in Different Protein Data Sets. 

The table is based on proteins in Swiss-Prot with two domains of length between 50 and 

200 amino acids connected by a linker that is less than 30 amino acids. Proteins with 

additional nested or overlapping Pfam domain indications were excluded. 

3.3.2 N-terminal domains in two-domain proteins are predicted to fold 
faster than C-terminal domains 

The inverse dependence between folding rate and chain length (Galzitskaya et al., 2003; 

Thirumalai et al., 2010) suggests that N-terminal domains in double-domain proteins are 

selected to be shorter than their C-terminal counterparts so that they fold faster.  Given that 

the detailed folding kinetics of most proteins are not known, we decided to test this idea 

using ACO as a predictor of the relative folding rates of the individual domains in double-

domain proteins.  We restricted our analysis to two-domain proteins with known structure 

in which both domains belong to the same family (as defined by the CATH (Orengo et al., 

1997) and SCOP (Murzin et al., 1995) databases) so that the strong dependence of ACO 

and chain length on topology would not mask a signal that arises from the domain order.  

The analysis was carried out using both CATH and SCOP in order to ensure that the ACO 
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values that are calculated separately for each domain do not depend on the choice of 

domain boundaries that may differ in the two databases.  We also required that each domain 

is formed by a continuous sequence of 50 to 300 residues and is, thus, in the range where 

ACO and chain length were shown to have predictive value.  Finally, we only considered 

two-domain proteins in which the combined lengths of the two domains is >80% of the 

length of the full protein and the linker connecting the two domains is less than 30 amino 

acids.  Data for families with more than one member were included in the analysis using 

their average so that large families would not be overrepresented. 

A significant tendency is observed for the ACO values of the N-terminal domains 

in two-domain proteins (satisfying the criteria described above) to be smaller than those of 

their neighboring C-terminal domains (Figure 3.5).  The values of the ratio between the 

number of all two-domain proteins in SCOP and CATH with a predicted faster folding N-

terminal domain and the number of all those with a predicted faster folding C-terminal 

domain (nACO(Nt)<ACO(Ct)/nACO(Ct)<ACO(Nt)) are 1.4 and 1.7, respectively, with respective 

binomial test P-values of 0.04 and 0.016.  This tendency is observed for all domain classes 

(, , / and +) in both SCOP and CATH.  The values of 

nACO(Nt)<ACO(Ct)/nACO(Ct)<ACO(Nt) are 1.7, 1.5 and 1.8 for the 19, 28 and 44 respective members 

of the , , / and + classes in CATH and 1.8, 1.3 and 1.4 for the 31, 46 and 88 

members of these classes in SCOP.  Importantly,  the bias for ACO values of the N-terminal 

domains in two-domain proteins to be smaller than those of their neighboring C-terminal 

domains is not due to differences in domain lengths as it is observed also for proteins with 

domains of similar size (Table 3.2).  For example, the values of the ratio 

nACO(Nt)<ACO(Ct)/nACO(Ct)<ACO(Nt) for all the two-domain proteins in CATH and SCOP, when 

those with a difference of more than ten amino acids in their domain lengths were excluded 

from the analysis, are 1.6 and 1.4, respectively.  The corresponding P-values of 0.053 and 

0.078 are, however, somewhat higher owing to the smaller sizes of the datasets when only 

two-domain proteins comprising domains with similar lengths are considered. We also 

calculated Fisher exact test of independence P-values to determine to what extent ACO 

values contain information beyond that which is provided by domain length.  The 

respective Fisher exact test P-values of 0.32 and 0.798 for the case above indicate that the 

bias in ACO values is not due to differences in domain lengths (Table 3.2).   
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Figure 3.5 Distribution of the differences in absolute contact order (ACO) values of 

the N- and C-terminal domains in proteins with two domains that belong to the same 

family. 

(A) Two-domain proteins in SCOP, (B) two-domain proteins in CATH, (C) two-domain 

eukaryotic proteins in CATH, and (D) two-domain prokaryotic proteins in CATH.  The 

proteins were binned so that the frequency of two-domain proteins with a positive value of 

ACO (i.e.  ACONt < ACOCt) in a certain range can be compared with the frequency of 

two-domain proteins with a negative value of ACO (i.e. ACONt  > ACOCt) in the same 

range of absolute values.  The frequency of two-domain proteins with a positive value of 

ACO in a certain range is nearly always found to be greater than the frequency of two-

domain proteins with a negative value of ACO in the same range of absolute values.  In 

the SCOP database (A), there are 101 and 73 proteins for which ACONt < ACOCt and 

ACONt > ACOCt, respectively (binomial two-sided test P-value of 0.04).  In the CATH 

database (B), there are 58 such proteins for which the ACO value of the N-terminal domain 

is smaller than that of its neighbouring C-terminal domain (ACONt < ACOCt) and 34 

proteins for which ACONt > ACOCt (binomial two-sided test P-value of 0.02).  Such a 

tendency is observed for all thresholds of non-redundancy analyzed in SCOP and CATH.  

 

In the case of relative contact order (RCO) calculations (see Methods) for two-domain 

proteins with a difference of less than ten amino acids in their domain lengths, the values 

of the ratio nRCO(Nt)<RCO(Ct)/nRCO(Ct)<RCO(Nt) for the two-domain proteins in CATH and SCOP 

are, as expected, similar to the corresponding values of nACO(Nt)<ACO(Ct)/nACO(Ct)<ACO(Nt) but 
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the dependence of the bias on domain length is greater as reflected in the respective Fisher 

exact test P-values of 0.1 and 0.077 (Table 3.2).  In summary, therefore, two predictors of 

folding rate, domain length and ACO, indicate independently of each other that N-terminal 

domains in two-domain protein tend to fold faster than their neighboring C-terminal 

domains. The bias for positive values of ACO is found to be significantly greater in the 

two-domain proteins in CATH from prokaryotes (D) than in those from eukaryotes (C).  

See Figure 6 for additional data. 

  

SCOP 

 ACO RCO 

Maximum 

difference 

between 

domain 

lengths 

nACO(Nt)<ACO(C

t)/nACO(Ct)<ACO

(Nt) 

Fisher 

exact test 

P-value 

Binomial 

test P-

value 

nRCO(Nt)<RCO(Ct)

/nRCO(Ct)<RCO(N

t) 

Fisher 

exact test 

P-value 

Binomial 

test P-

value 

10 62/43 0.32 0.078 63/42 0.1 0.05 

15 72/47 0.13 0.027 75/44 0.12 0.005 

20 75/53 0.046 0.063 77/51 0.13 0.026 

30 86/59 0.005 0.030 82/63 0.16 0.134 

40 90/65 0.005 0.053 88/67 0.046 0.107 

50 90/69 0.009 0.112 88/71 0.03 0.204 

 

CATH 

 ACO RCO 

Maximum 

difference 

between 

domain 

lengths 

nACO(Nt)<ACO(C

t)/nACO(Ct)<ACO

(Nt) 

Fisher 

exact test 

P-value 

Binomial 

test P-

value 

nRCO(Nt)<RCO(Ct)

/nRCO(Ct)<RCO(N

t) 

Fisher 

exact test 

P-value 

Binomial 

test P-

value 

10 43/26 0.798 0.053 41/28 0.077 0.148 

15 41/33 0.228 0.41 46/28 0.08 0.047 

20 45/34 0.360 0.26 48/31 0.03 0.071 

30 46/35 0.103 0.266 44/37 0.011 0.505 

40 54/35 0.069 0.055 48/41 0.001 0.525 

50 56/33 0.039 0.019 48/41 0.004 0.525 

Table 3.2 Summary of statistics for the relative (RCO) and absolute (ACO) contact 

order values for two-domain proteins in which the difference in the lengths of the N- 

and C-terminal domains is restricteda. 
aFisher exact test is used to calculate the likelihood that a bias in ACO or RCO values is 

independent of domain length (i.e. P > 0.05 indicates that the two measurements are 

independent). The probability of the indicated bias to happen by chance is calculated using 

the binomial two-sided test. 
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3.3.3 Bias for faster folding N-terminal domains is greater in prokaryotes 
than in eukaryotes 

The tendency for N-terminal domains to be predicted as faster folders than their C-terminal 

neighboring domains is found to be greater in prokaryotes than in eukaryotes (Figures 

3.5C,D and 3.6).  In 28 families in CATH that comprise prokaryotic proteins, the ACO 

values of the N-terminal domains are smaller than those of their respective C-terminal 

neighboring domains whereas only in 13 families the opposite is found (binomial two-

sided test P-value of 0.03).  In eukaryotic families, the ACO values of the N-terminal 

terminals are smaller than those of the neighboring C-terminal domains in 32 families in 

CATH whereas in 24 families the opposite is seen and while the trend is, therefore, 

maintained it is not significant statistically (binomial two-sided test P-value of 0.35).  This 

difference between prokaryotes and eukaryotes is also seen in the two-domain proteins in 

SCOP (Figure 3.6).  The bias for N-terminal domains in two-domain proteins to be shorter 

than their C-terminal counterparts was also found to be stronger in prokaryotic proteins 

(Table 3.1).  Taken together, therefore, the data indicate that selection for N-terminal 

domains to fold faster than their C-terminal neighboring domains is much stronger in 

prokaryotes than in eukaryotes. 
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Figure 3.6 Distribution of the differences in absolute contact order (ACO) values of 

the N- and C-terminal domains in two-domain proteins in SCOP that belong to the 

same family in prokaryotes (A) versus eukaryotes (B). 

The frequency of two-domain proteins with a positive value of ACO (i.e.  ACONt < 

ACOCt) in a certain range is compared with the frequency of two-domain proteins with a 

negative value of ACO (i.e. ACONt  > ACOCt) in the same range of absolute values.  The 

frequency of two-domain proteins with a positive value of ACO is found to be 

significantly greater than the frequency of two-domain proteins with a negative value of 

ACO in prokaryotes than in eukaryotes. 
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3.3.4 Two-domain proteins with an N-terminal domain that is shorter than 
its neighboring C-terminal domain are more abundant 

Given that proteins with a propensity to mis-fold tend to be less abundant (Drummond and 

Wilke, 2008; Tartaglia and Vendruscolo, 2009), we reasoned that two-domain proteins 

with a shorter N-terminal domain should be more abundant than those with a shorter C-

terminal domain if this bias reflects selection against mis-folding.  Surprisingly, the overall 

lengths of two-domain proteins with a shorter N-terminal domain tend to be less than those 

of two-domain proteins with a shorter C-terminal domain (Figure 3.7).  We decided, 

therefore, to compare the abundances of two-domain proteins with different domain 

lengths but with a similar overall chain length.  Strikingly, we find that two-domain 

proteins with an N-terminal domain that is shorter than the C-terminal domain are more 

abundant than two-domain proteins with similar overall chain length but with shorter C-

terminal domains (Figure 3.8).  This tendency is also seen for each of the individual species 

in the dataset (see Methods), when the data for the different species, which include both 

prokaryotic and eukaryotic model organisms such as E. coli, S. cerevisiae and H. sapiens, 

are analyzed separately (not shown).  Furthermore, when the analysis is restricted to two-

domain proteins with a linker that is ten or less amino acids long (Figure 3.9), this trend 

becomes more pronounced as might be expected since a short linker length can increase 

the probability of mis-folding or aggregation  (e.g. (Arndt et al., 1998).  Finally, we also 

found that three-domain proteins in which the N-terminal domain is appreciably shorter (> 

ten amino acids) than the middle domain which, in turn, is appreciably shorter than the C-

terminal domain are more abundant compared to triple-domain proteins with the other five 

possible rank orders of domain sizes (data not shown).  We do not find, however, that 

triple-domains with any particular rank order of domain lengths are more abundant but the 

analysis of proteins with more than two domains is restricted by less available data on the 

one hand and more potential rank orders on the other hand.   
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Figure 3.7 Chain length distributions of two-domain proteins with shorter N- or C-

terminal domains. 

Density plots of the overall length of two-domain proteins with shorter N- (purple) or C-

terminal (turquoise) domains show that the tendency for those with shorter N-terminal 

domains to have a shorter overall length is significant with a Wilcoxon rank sum test (two 

sided) P-value of 2.5x10-11.  The mean values of the overall length of the two-domain 

proteins with shorter N- or C-terminal domains are 298 and 329 residues, respectively.  The 

analysis is based on 1,699 two-domain proteins. 
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Figure 3.8 Comparison between the mean abundances of two-domain proteins of 

similar overall chain length with either a shorter N-terminal domain or with a 

shorter C-terminal domain. 

The two-domain proteins were binned according to their overall length (bin width is set 

here to 25 amino acids) (see Figure 3.7) and the average abundances of all the proteins with 

either a shorter N-terminal domain (purple) or with shorter C-terminal domain (turquoise) 

in each bin were calculated separately.  The analysis was carried out using abundance data 

downloaded from http://pax-db.org for 1,699 two-domain proteins (with length between 

50-200 amino acids and a linker shorter than 30 amino acids) in the Pfam database from 

12 different organisms.  The mean abundances of all the two-domain proteins with a shorter 

N-terminal domain or with a shorter C-terminal domain are 590.53 and 229.75 ppm, 

respectively.  The difference between the binned data for the two groups was found to be 

significant (P-value = 0.01) using the Wilcoxon rank sum paired test (two sided).  For 

additional data and analyses, see Figures 3.9 and 3.10. 

 

http://pax-db.org/
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Figure 3.9 Comparison between the mean abundances of two-domain proteins of 

similar overall chain length with shorter N- (purple) or C-terminal (turquoise) 

domains that are connected by a linker of ten residues or less. 

The analysis was carried out for 825 two-domain proteins as described in the legend to 

Figure. 3.8.  The mean abundances of all the two-domain proteins with a shorter N-terminal 

domain or with a shorter C-terminal domain are 995.30 and 224.30 ppm, respectively.  The 

difference between the binned data for the two groups was found to be significant (P-value 

<3x10-5) using the Wilcoxon rank sum paired test (two sided). 

 

3.3.5 Higher abundance of proteins with shorter N-terminal domains is 
much more pronounced for longer proteins 

  

The risk of protein mis-folding as a result of formation of non-native inter-domain 

interactions is likely to increase as folding times approach translation times which can be 

the case for proteins longer than 150 amino acids (Naganathan and Muñoz, 2005).  Hence, 

the benefit reflected in protein abundance that is associated with having a shorter N-

terminal domain is expected to increase with protein size.  We, therefore, compared the 

mean abundances of two-domain proteins with shorter N- or C-terminal domains (Figure 

3.10) but with a similar overall chain length that is either less than 150 residues, between 

150 and 300 residues or between 300 and 450 residues.  In the case of two-domain proteins 

shorter than 150 residues, the mean abundance of two-domain proteins with a shorter N-

terminal domain is only marginally higher than that of those with a shorter C-terminal 

domain (Figure 3.10).  However, in the case of two-domain proteins that are longer than 
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150 residues, the mean abundance of those with a shorter N-terminal domain is 

significantly higher than that of those with a shorter C-terminal domain (Figure 3.10).  

These findings, therefore, suggest that selection for shorter N-terminal domains increases 

when the folding and translation times are in the same range.    

 

  

 

Figure 3.10 Comparison between the mean abundances of two-domain proteins with 

shorter N-terminal (purple) or C-terminal (turquoise) domains for three ranges of 

protein size. 

The analysis was carried out for 33, 882 and 574 two-domain proteins with similar overall 

chain lengths that are either less than 150 residues, between 151 and 300 residues or 

between 301 and 450 residues, respectively. The ratios between the mean abundances of 

the proteins with a shorter N-terminal domain and those with a shorter C-terminal domain 

are 1.34 (1801.62/1335.67), 2.69 (583.20/216.20) and 3.36 (689.60/204.63) for the three 

protein size ranges (in order of increasing size), respectively. The P-values for the 

difference in the abundances of the two-domain proteins with shorter N-terminal or C-

terminal domains in each of the three bins were calculated using the Wilcoxon rank sum 

paired test (two sided) and are indicated above the respective abundances. 

 

3.3.6 Bias in proteins with more than two domains 

Expanding the analysis for proteins with more than two domains is restricted by less 

available data on the one hand and more potential rank orders (6 for triple-domains) on 

the other hand.  We do not find that triple-domains with any particular rank order of 

domain sizes are more common.  However, we do see that triple-domains in which the 

first domain is appreciably shorter (by 10 amino acids) than the second which, in turn, is 
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appreciably shorter than the third (designated by 1<2<3) are more abundant compared to 

triple-domains with all other five rank orders (see Figure 3.11) with a P-value of 0.00038.  

This result supports our conclusions and is mentioned in the revised text. 

 

 

Figure 3.11 Abundance distributions for triple-domain proteins in all triple 

configurations. 

Abundance values are taken from PaxDb. 
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3.4 Conclusions  

This study shows a significant tendency for the N-terminal domains of two-domain 

proteins to be shorter than their neighboring C-terminal domains (Figure 3.4 and Table 

3.1).  I have also found that the ACO values of N-terminal domains tend to be smaller than 

those of their neighboring C-terminal domains (Figure 3.5).  Given that both chain length 

and ACO are inversely correlated with folding rate, our results suggest that there is a bias 

for two-domain proteins in which the N-terminal domain folds faster than its C-terminal 

counterpart.  In such two-domain proteins, folding of the N-terminal domain is predicted 

by the exponential dependence of folding rate on chain length and ACO  (Ivankov et al., 

2003; Plaxco et al., 1998) to be 10-14 times faster, on average, than that of the C-terminal 

domain.  Such a bias in folding rates may reflect selection against mis-folding since 

domain-by-domain folding can minimize formation of non-native interdomain 

interactions.  In addition, folding of an N-terminal domain can catalyse the folding of its 

neighboring C-terminal domain as shown for spectrin domains (Batey and Clarke, 2008), 

thereby reducing the risk of aggregation.  Support for the suggestion that the bias reflects 

selection against mis-folding is provided by the observation that two-domain proteins with 

a shorter N-terminal domain are more abundant than those with a shorter C-terminal 

domain (Figure 3.8) since proteins with a tendency to mis-fold are, in general, less 

abundant (Drummond and Wilke, 2008; Tartaglia and Vendruscolo, 2009). 

There is increasing evidence that folding of multi-domain proteins takes place co-

translationally in both eukaryotes (Netzer and Hartl, 1997) and prokaryotes (Cabrita et al., 

2010; Nicola et al., 1999).  Co-translational folding is potentially more efficient than post-

translational folding as it can facilitate domain-by-domain folding, thereby minimizing 

mis-folding owing to formation of non-native interdomain interactions.  It has been 

suggested that translational pausing owing to the presence of rare codons might allow one 

domain to fold before synthesis of the other is completed (Komar, 2009).  The data 

presented here, based on a survey of a large number of domain families, indicate that 

increased efficiency of multi-domain protein folding is often achieved by another 

mechanism, i.e. selection for faster folding of N-terminal domains relative to their C-

terminal neighboring domains via fine tuning of their respective structural properties.  The 

observation that this bias is greater in prokaryotes than in eukaryotes (Figures 3.5C,D and 

3.6) is intriguing and may reflect compensation for the absence in prokaryotes of an 

extensive chaperone network that interacts with nascent chains (Albanèse et al., 2006).  
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The bias is also expected to be greater when the time-scales of translation and folding are 

closer and may, therefore, be more pronounced in prokaryotes since their translation rates 

are 5- to 10-fold faster than those of eukaryotes (Liang et al., 2000; Mathews et al., 2007).  

This expectation is also consistent with our observation that the tendency for proteins with 

shorter N-terminal domains to be more abundant than those with shorter C-terminal 

domains is more pronounced for longer proteins.   

 

 

3.5 Future work 

Another possible function for the bias for shorter N-terminal domains vs. their C-terminal 

counterparts described here, is structural templating, a process in which a folded domain 

facilitates the folding of its C-terminal neighboring domain that is translated 

subsequently,(Figure 3.12). A preliminary analysis of a non-redundant set (NR95) from 

SCOP (almost 2000 two-domain proteins) reveals more than 100 two-domain proteins 

with an observed template-like interface. Future work can extend this data set and continue 

in studying this direction in relation to folding rates, folding characteristics (e.g. 

intrinsically unfolded proteins and nanny proteins (Tsvetkov et al., 2009)) and structural 

density in multi-domain proteins. 

In order to prevent aggregation and promote efficient folding under stress and normal 

conditions, many cellular resources are invested in a complex network of chaperones 

(Figure 3.3) (Albanèse et al., 2006; Hartl et al., 2011). The analysis of domain length bias 

that was based on more than 1300 complete proteomes from bacteria to human, showed 

that the higher the organism the lower is the bias (table 1.1). It is possible that the 

development of the chaperone network in higher organisms enabled the evolution of more 

multi-domain proteins in those genomes (Albanèse et al., 2006), while maintaining 

adequately low aggregation rates. This raises the question of identifying the part of that 

network that is involved in preventing multi-domain protein aggregation. Another 

interesting question is whether two-domain proteins with a strong bias towards shorter N-

terminal residues potential substrates for chaperonins more than other multi-domain 

proteins (assuming they can enter the chaperonin cavity)?   
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Figure 3.12 A possible templating mechanism of the N-terminal domain on its C-

terminal counterpart. 

Densely structured N-terminal (light brown) domain serves as a template for its 

neighboring C-terminal domain (purple or peach color). Top – PDB code 1vjtA, represents 

a hetero two-domain protein with a large interface between its domains. Bottom – PDB 

code 2k49A, represents a homo two-domain protein with a large interface between its 

domains.  
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 Abstract in Hebrew  -  תקציר

 

 מבוא

תהליך הפיצוח ארך . 1955רצף חומצות האמינו הראשון שפוצח במלואו היה של חלבון האינסולין בשנת 

מעבר , חשיבותם של ממצאים אלו. י סנגר ועמיתיו ובמהלכו פותחו שיטות ניסוי חדשות"כעשר שנים ע

במהלך השנים שופרו שיטות  .המדעית של אותה תקופה הייתה השינוי בתפיסה, לשיטות הניסוי אשר פותחו

 65כבר היו בנמצא  1965בשנת , ולראייה –ריצוף החלבונים ותהליכי הפיצוח התקצרו באופן משמעותי 

א נתקל במכשולים "ריצוף הדנ, בניגוד להצלחות בריצוף חלבונים בתקופה זו. רצפים של חלבונים שונים

, כאשר סנגר ועמיתיו 1977המהפך המשמעותי קרה בשנת . א ארוכות"ות דנובפרט בקושי לרצף מולקול, רבים

שיטת "הקרויה , שיטה זו. א ארוכות"פיתחו שיטה המסוגלת להתמודד בהצלחה עם ריצוף של מולקולות דנ

ונעשה בה אף שימוש לפיצוחם , שנים הבאות 25 -שימשה כבסיס לטכנולוגית הריצוף ב", הראשון-ריצוף הדור

 .לרבות הגנום האנושי, רצפי גנומים של מספר לא מבוטל של אורגניזמיםהמלא של 

מהפך ( א"א ודנ"רנ)עבר עולם ריצוף הנוקלאוטידים , 2003למן ההכרזה על פיצוח הגנום האנושי בשנת  

טכנולוגיה זו מבוססת על ריצוף מקביל של מיליוני . משמעותי המבוסס על טכנולוגית ריצוף הדור החדש

תהליך הריצוף באמצעות שיטה זו הוא מהיר ביותר ומאפשר ריצוף של . א"א או רנ"ות של דנחתיכות קצר

העלויות הנמוכות ופשטות השימוש והתפעול של הטכנולוגיה , בנוסף. גנום אנושי בשלמותו בפחות מיום בודד

יות רחבות היקף וכיוצא בזה גם ליצירה של כמו, ל הביאו לתפוצה רחבה של טכנולוגיות אלו ברחבי העולם"הנ

מ לחקור "ע, לדוגמא. טכנולוגיות ריצוף הדור החדש משמשות גם לאפיון תופעות ביולוגיות. של מידע רצפי

נעזרים בשיטה המשלבת את טכנולוגית ריצוף הדור החדש עם מיצוי , א"אינטראקציות של חלבונים עם דנ

המקטעים המכילים אזורים שעוברים ו ,םנחתכי א"גדילי הדנ, בשיטה זו(. ChIP-seq)נוגדני של כרומטין 

י חלבונים ספציפיים שמזהים אותם ומנוּפּים "מושקעים ע –כגון פקטורי שעתוק  –אינטראקציה עם חלבונים 

א מרוצפים בשיטת ריצוף "ומקטעי הדנ, א שמוצו עוברים הפרדה"והדנ החלבונים יתלכיד. משאר המקטעים

ובכך ניתן להעריך באילו אתרים גנומים קיימת אינטראקציה של , תוצר הרצפים ממופה לגנום. הדור החדש

 .לרבות אינטראקציה של פקטורי שעתוק עם פרומוטורים, א"החלבונים שמוצו עם הדנ

שתוצרתן אינה נעשתה התקדמות משמעותית גם בשיטות ניסוי , בד בבד עם התפתחות שיטות הריצוף 

, התפתחויות בשיטות הקריסטלוגרפיה, של המאה הקודמתבסוף שנות השמונים , לדוגמא .רצפים ביולוגים

ביטוי חלבונים ויכולות החישוב הביאו להצלחות בתחום פיתרון המבנים השלישוניים של , שיבוט גנים

וכתוצאה מכך  הביאו להרחבה משמעותית של מסד הנתונים של בנק מבני החלבונים , חלבונים רבים

(Protein Data Bank .)ת נוספת לטכנולוגיה שפותחה בשנות התשעים של המאה הקודמת דוגמא משמעותי

אשר הלכה ונהפכה למקובלת בעולם , שיטה זו. יפ הגנטי'היא שיטת מדידה של ביטוי גנים הנקראת הצ

מאפשרת מדידה במקביל של רמות הביטוי של אלפי גנים עבור דגימה ביולוגית , המחקר במשך שנים רבות

הלכו והצטברו במאגרי הנתונים הציבוריים כמויות רבות ביותר של , מכך כתוצאה. באופן פשוט יחסית

  .ממעבדות ברחבי העולםמדידות ביצורים שונים 

מ לאפשר "הצטברות המידע הרב במהלך השנים מכל אותם ניסויים יצר הכרח לארגנו במסדי נתונים ע 

דוגמא מובהקת לארגון מסד . וחישובים לצורך ביצוע מגוון ניתוחים, לקהילת המחקר גישה נוחה ויעילה אליו

 65אשר מנה , של המאה הקודמת' 60-נתונים כאמור  הנה יצירתו של מסד הנתונים הראשון עוד בשנות ה

מסדי הנתונים הלכו וגדלו בעקבות , בשנות השמונים של המאה הקודמת, בהמשך. רצפי חלבונים

גידול בכמות הרצפים התבטא ביתר שאת לגבי רצפי ה. והגיעו לכדי מאות רצפים, ההתפתחויות הטכנולוגיות



 ב
 

ובהם הגנום , כבר כללו מסדי הנתונים רצפי גנומים שלמים שהצטברו 1995 בשנת(. א"א ורנ"דנ)נוקלאוטידים 

עליה עמדנו , טכנולוגיית ריצוף הדור החדש, במהלך שנות האלפיים. 2003האנושי אשר פוצח כאמור בשנת 

הכיל אחד ממאגרי המידע  2009בשנת , לשם המחשה. של מספר הרצפים ילגידול מעריכהביאה , לעיל

 2.75E-15הכיל מאגר זה  2015ואילו בשנת , בסיסי נוקלאוטידים 1.35E-13הנוקלאוטידי המרכזי בעולם 

ניכר גידול משמעותי ביותר גם במאגרים של נתונים , לצד הגידול חסר התקדים במאגרי הרצפים. בסיסים

ורבים ( GEO)מאגר המידע של ביטוי גנים (, PDB)מאגר המידע של מבני החלבון השלישוני כגון  –אחרים 

 . אחרים

, אשר מטרתם לזהות אזורים ברצף בעלי חשיבות פונקציונלית או מבנית, השוואות בין רצפים וניתוחם 

למת ריצופם של חלבוני האינסולין מיצורים עם הש –התבצעו כבר בשנות החמישים של המאה הקודמת 

 Multiple sequence)ועימוד מרובה רצפים ( sequence alignment)כגון עימוד רצפים  –שיטות אלו . שונים

alignment )– מ להתמודד עם העלייה במספר הרצפים שהצטברו במאגרי המידע במהלך "שוכללו ושופרו ע

 . השנים

חל גידול משמעותי גם במאגרי מידע ביולוגיים , אגרי המידע של הרצפיםלצד הגידול חסר התקדים במ 

כגון מאגר המבנים השלישוניים של (, שהמידע בהן אינו רצף חומצות אמינו או נוקלאוטידים)אחרים 

ל במאגרי המידע של ואולם הגידול במאגרי מידע אלה היה איטי לאין שיעור מהגידו –( PDB)החלבונים 

ביטוי מובהק לכך מצוי בעובדה כי מספר המבנים השלישוניים הידוע כיום נמוך בהרבה ממספר . הרצפים

החלו לפתח שיטות , במטרה לגשר על הפער האמור. ופער זה רק הולך וגדל, הרצפים הידועים

זה גם ניבוי מבנה שניוני ובכלל  –שמנבאות תכונות של חלבונים על בסיס הרצף לבדו , ביואינפורמטיות

 . ושלישוני של חלבונים

עודנה מוגבלת בחלק לא ( אשר הולכות ומשתכללות אף הן בחלוף הזמן)הצלחתן של שיטוי ניבוי אלה  

ואולם  עצם האפשרות למצוא מידע שהיה קשה לגלותו באמצעות ניסויים במעבדה בלבד , מבוטל מהמקרים

, תזה זו מתמקדת בגילוי תכונות של חלבונים על בסיס רצפם.מדגיש את הפוטנציאל הרב הטמון בהן

בפרק הראשון תובא ותנותח גישה .  באמצעות שיטות חישוביות ועל בסיס מידע ממקורות ביולוגיים שונים

ובפרק השני יוצע ; חדשה למיצוי מידע על רצפים לצורך הגעה  להבנות חדשות בנוגע למבנה השלישוני שלהם

 . עת אגרגציה בחלבונים מרובי דומייניםמנגנון אפשרי למני
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 ראשון פרק

מתבססות על דמיון בין הרצף שאת , שיטות רבות לניבוי מבנה שלישוני של חלבון אשר פותחו במהלך השנים

אלא שבמקרים רבים  –מבנהו מעוניינים לנבא לבין רצף חלבונים אחרים שהמבנה השלישוני שלהם כבר ידוע 

, במקרים אלה. אשר רצפם דומה לרצף החלבון אותו מעוניינים לנבא, ה שלישוני ידועאין חלבונים בעלי מבנ

יכולות  –שיטות ניתוח המבוססות על הרצף בלבד ומשתמשות בניתוחים סטטיסטיים על מידע אבולוציוני 

הוא שכאשר ", ניתוח מוטציות בקורלציה"המכונות , הרעיון בבסיס שיטות ניתוח אלו. לתת את המענה

היא גוררת בעקבותיה , המשפיעה באופן כלשהו על מבנהו או יציבותו, חשת מוטציה באתר מסוים בחלבוןמתר

ההערכה . על מנת לפצות על השינוי שנגרם, מוטציה באתר אחר שיש לו איזושהי אינטראקציה עם אותו אתר

ד לשני ויוצרים היא כי במקרים רבים מוטציות מפצות אחת על השנייה באתרי חלבון הנמצאים קרוב אח

פותחו שיטות חישוביות שמטרתן לזהות אתרי חלבון בקורלציה  ,במהלך השנים, לכן. לרוב קשר פיזיקלי

ניתן להעריך את המבנה השלישוני של החלבון , בכך. כדרך לנבא קירבה מרחבית בין אותם אתרים, גבוהה

 . כולו על בסיס אותם אתרים שנובאו כקרובים מרחבית

פותחו שיטות רבות לניבוי קשרים בין חומצות אמינו בחלבונים על , השנים האחרונות במהלך עשרים 

ראה )השיטות השונות כוללות את השלבים כדלהלן , בחלק גורף מהמקרים. בסיס ניתוח מוטציות בקורלציה

( יתהומולוגיה רצפ)מתבצע עימוד מרובה רצפים של חלבונים בעלי קירבה אבולוציונית , ראשית(. 1שרטוט 

תדירות : ערכי המתאם בין כל זוגות האתרים בחלבון נמדדים באופן הבא, שנית. לרצף החלבון הנדרש לניבוי

המופעים המשותפים של חומצות האמינו בין כל שני אתרים בחלבון נמדדת ומשווה לצפי התדירות המשותפת 

פ סדר חשיבות סטטיסטית או "ערכי מתאם אלה מדורגים ע, שלישית. בהנחה של אי תלות בין שני האתרים

, לדוגמא)לזוגות עם ערך מתאם גבוה שעבר סף מסוים אשר נקבע מראש . פיזיקלית שמשוערכת עבור כל ערך

מיוחסת קירבה פיזית שיכולה לשמש לניבוי המבנה (, הזוגות בעלי ערך המתאם הגבוה ביותר 200סף של 

 . השלישוני של החלבון
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לי זיקה אחד לשני ברצף החלבון היכולה לרמוז על קירבה פיזית במבנהו זיהוי אתרים בע. 1שרטוט 

 שייך(, שרשרת העיגולים האפורים)רצף החלבון עבורו נבקש לנבא את המבנה השלישוני  .השלישוני

(. העימוד מרובה הרצפים באותיות לטיניות אפורות)משפחת חלבונים בעלי קירבה אבולוציונית ל

ן שני הטורים בעימוד הרצפים היא תוצר של אילוץ פיזיקלי הנובע מקשר השונות האבולוציונית בי

 ,.Marks et al)  י אחרים"תמונה זו נלקחה ממחקר שנעשה בעבר ופורסם ע. ישיר בין שני האתרים

2015.) 

 

ערכי מתאם גבוהים לעיתים אינם משקפים קירבה פיזית בין שני אתרים בחלבון , ברם 

" רעש)"שנקראת מוצא אבולוציוני משותף , האחת. ת מרכזיות נוספותויכולים לנבוע משתי סיבו

היא תוצאה של מבנה העץ הפילוגנטי שמכתיב את הקורלציות בין האתרים ללא קשר (, אבולוציוני

היא תוצאה של , שנקראת קשר לא ישיר בין שני האתרים, השנייה. לאילוצים הנובעים ממבנה החלבון

גוררים ' לאתר ג' בחלבון ובין אתר ב' לאתר ב' בין אתר א( בה פיזיתקיר)מצב בו  קשרים ישירים 

שתי סיבות מרכזיות אלו . אף על פי שאין ביניהם קשר ישיר', לאתר ג' קורלציה לכאורה בין אתר א

כלומר למסקנה כי הקורלציה בין שני אתרים מעידה על קשר ישיר ביניהם , מביאות לשגיאה בזיהוי

ל מהווים "כי הרעש האבולוציוני והקשר הלא ישיר הנ, יוצא אפוא. הדבר בפועל אף על פי שלא כך הוא

נעשו במהלך השנים ניסיונות , לאור זאת. את המכשול המרכזי ביכולת הניבוי של מבנים שלישונים

, עם פיתוחן של השיטות המוקדמות של ניתוח מוטציות בקורלציהכבר , ואכן. לנפות מקרים אלו

שנועדו להתמודד עם שגיאות שנובעות ממוצא אבולוציוני משותף והביאו לשיפור הומצאו גם דרכים 

מכיוון שבשיטות המוקדמות של ניתוח מוטציות בקורלציה הייתה , פי כן אף על. בהצלחות הניבוי

שגיאות בזיהוי הנובעות , לפיה אין תלות של זוגות אתרים באתרים נוספים בחלבון, הנחת מוצא

 . המשיכו להוות מכשול מרכזי –קשר לא ישיר בין שני אתרים   –זכרה לעיל מהסיבה השנייה שהו

אשר הביאה בהתאמה לגידול בכמות המידע , עם העלייה במספר הרצפים, בשנים האחרונות

פותחו שיטות סטטיסטיות שלוקחות בחשבון את קיום , שהצטבר בנוגע למשפחות חלבונים רבות

, ובכך מצליחות להתמודד עם מכשול הרעש, ר האתרים בחלבוןהתלות בין זוגות אתרים לבין כל שא

, באופן משמעותי, הסרת מכשול הרעש  שיפרה אמנם. אשר נובע כאמור מקשר לא ישיר בין שני אתרים

בכל הנוגע לניבוי מבנה שלישוני של חלבונים  –את הביצועים של השיטות החדשות לעומת המוקדמות 

חיסרון נוסף  של שיטות חדשות . של שיטות אלה עודנה מוגבלתואולם רמת הדיוק ,על בסיס הרצף



 ה
 

אלה מתבטא בכך שהן דורשות מספר רב של רצפים על מנת להגיע לרמת ניבוי טובה יותר מהשיטות 

 .  המוקדמות

מידע נוסף , אולם. ניתוח מוטציות בקורלציה התבסס באופן בלעדי על רצפי חלבונים, עד עתה

מקורו של מידע זה מגיע . הנוקלאוטידים המקודדים לחלבונים אלו ובעל ערך נמצא ברמת רצפי

 . מיתירות הקוד הגנטי המתבטאת בכך שיותר מסוג אחד של קודון מתורגם לאותה חומצה אמינית

מתוארת גישה חדשה לניתוח מוטציות בקורלציה המבוססת על מידע ברמת , בעבודת מחקר זו

. ת רצף הנוקלאוטידים המקודדים לאותם חלבוניםברמרצף חומצות האמינו בשילוב עם מידע 

הסבירות לקשר ישיר בין שני אתרים בחלבון היא גבוהה יותר : העיקרון מאחורי גישה זו הנו פשוט

כאשר הקורלציה ברמת חומצות האמינו בין אתרים אלה חזקה ובו בעת הקורלציה ברמת הקודונים 

דע ברמת הקודונים בשיטות שונות של ניתוח הנוסף במי על ידי השימוש . המתאימים היא חלשה

והדברים יובאו בתמצית  –נראה כיצד יש שיפור בניבוי קשרים בין אתרים בחלבון , מוטציות בקורלציה

  :להלן

הציון המנבא את פוטנציאל הקשר , באמצעות מספר שיטות של ניתוח מוטציות בקורלציה

והשנייה ברמת ; ת ברמת חומצות האמינוהאח, עבור כל זוגות האתרים בחלבון מחושב פעמיים

אך במהותו הוא מבוסס בכולן על ערך מתאם הקורלציה , ציון זה שונה אמנם בכל שיטה. הקודונים

י חלוקה של הציון ברמת חומצות האמינו בציון ברמת "הציון המשולב מחושב ע. בין זוג אתרים

קה זו תתעדף מקרים בהם יש לפיה חלו, בהתבסס על הנחת המוצא הברורה מאליה, הקודונים

ובכך יעלה הסיכוי להציף , קורלציה חזקה ברמת חומצות האמינו וקורלציה חלשה ברמת הקודונים

בהשוואה שמתבצעת במסגרת עבודת מחקר זו בנוגע . מקרים של קשר ישיר בין שני אתרים בחלבון

בצדו יתרון משמעותי  אל  ניתן לראות כי הציון המשולב מחזיק, לקבוצה גדולה של משפחות חלבונים

. מול הציון שמבוסס רק על רמת חומצות האמינו במספר שיטות שונות של ניתוח מוטציות בקורלציה

שילוב זה מנבא בהצלחה מספר רב של קשרים ישירים בין אתרים בחלבונים הנמצאים רחוק , בנוסף

אשר אינם עולים בשיטות המשתמשות במידע ברמת חומצות האמינו , קשרים –אחד מהשני ברצף 

 .בלבד ומחזיקים בצדם חשיבות יתרה לניבוי מבנה שלישוני של חלבונים
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דוגמא לקורלציה בין זוג אתרים בעימוד מרובה רצפי חומצות אמינו ועימוד הקודונים . 2שרטוט 

יכולה להתאים למצב שבו הקודונים  j -ו iקורלציה ברמת חומצות האמינו באתר  .המתאים לו

הנחת היסוד המוצגת בעבודת . (צד ימין למעלה) או לאו( צד שמאל למעלה)המתאימים הם בקורלציה 

מחקר זו היא שקורלציה ברמת חומצות האמינו יכולה לשקף קשר ישיר בין שני אתרים בחלבון בסיכוי 

 .א חלשהיותר גבוה כאשר ברמת הקודונים הקורלציה באתרים אלה הי
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 שני פרק

לוותה בגידול  במבחר החלבונים היכולים , התפתחותם של אורגניזמים מורכבים במהלך האבולוציה

אשר ,  (protein domain)מקום חשוב בתהליך ההתפתחות מילאו הדומיינים. למלא פונקציות שונות

בולוציונית של רצף מקודד דומיין הוא יחידה א. לעיתים קרובות מכונים גם אבני הבניין של החלבונים

לעיתים קרובות דומיין (. 3שרטוט )  אשר עוברת שכפול ורקומבינציה(, 100-250כ באורך של "בדר)

בחלק לא , בנוסף. ממלא תפקיד ביולוגי באופן עצמאי או במשותף עם דומיין או דומיינים אחרים

שכיחותם של . בפני עצמו הדומיין מתקפל באופן עצמאי למבנה קומפקטי העומד, מבוטל מהמקרים

כמחצית מהפרוטאומים של יצורים רבים מורכבים מחלבונים בעלי שני , הדומיינים בטבע גבוהה

כחמישה אחוז מאותם חלבונים מרובי דומיינים אף מורכבים משישה דומיינים . דומיינים לפחות

 . ויותר

הסיבה לכך היא . יין יחידחלבונים מרובי דומיינים נוטים יותר לאגרגציה מחלבונים בעלי דומ

כי הריכוז החלבוני בסביבתו הקרובה של כל דומיין הינו גבוה ומעלה את הסבירות למגעים לא רצויים 

פוטנציאל הנזק של קיפול , באופן כללי. לקיפול לקוי של החלבון אשר גורמים, בין דומיינים שכנים

ביניהם , בין השאר למחלות רבותהוא גורם לאגרגציה שמיוחסת :  לקוי של חלבונים הנו גבוה

והוא גורם למחסור בחלבונים הנדרשים לתפקוד התא ולהשקעת אנרגיה  ; 2אלצהיימר וסוכרת מסוג 

  . פינויים ופירוקם של החלבונים הפגומים שנוצרו, לשווא בייצורם

לא בכדי קיימות ראיות כי במהלך האבולוציה התרחשה סלקציה חזקה , בנסיבות אלה

נמצא כי יש קורלציה שלילית , לדוגמא. פול לקוי של חלבונים בכל שלוש ממלכות החייםלמניעת קי

ין הנטייה לאגרגציה שככל הנראה נובעת מהצורך למזער נזקים הנובעים לב שליחא "בין רמות הרנ

, הימנעות מאגרגציה חשובה בפרט כאשר מדובר בחלבונים מרובי דומיינים. בעקבות קיפול לקוי

הם מהווים חלק לא מבוטל מהחלבונים בתא וגם בעלי נטייה מוגברת  –שהוזכר לעיל  מכיוון שכפי

 . לאגרגציה

מ להימנע מאגרגציה של "במהלך השנים נעשו ניסיונות להבין באילו מנגנונים משתמש התא ע

מנגנון אחד שעלה כאפשרי הוא קיפול במהלך התרגום שתפקידו למנוע . חלבונים מרובי דומיינים

. בין דומיין שזה הרגע תורגם עם דומיינים שכנים שכבר תורגמו באותה שרשרת פפטידית אגרגציה

בפרט )ואכן בתא , גם הם יכולים לסייע לקיפול של דומיין אחרי דומיין( חלבונים מלווים)פרונים 'צ

פרונים משמעותי המסייע בין השאר בתהליכי קיפול חלבונים ומניעת 'יש מערך צ( תאים איוקריוטים

מנגנון נוסף שהוצע למניעת אגרגציה של חלבונים מרובי דומיינים הוא סלקציה של דומיינים . גרגציהא

הסיבה לכך היא שדמיון רצפי גבוה בין דומיינים סמוכים מעלה . שכנים עם דמיון רצפי נמוך ביניהם

מבנה  את הסיכויים לאינטראקציות ביניהם במקום האינטראקציות הנדרשות בתוך הדומיין לקיום

חלבונים מרובי דומיינים ללא ספק מוסיפים רמה נוספת של מורכבות למערכת שלא . יציב ועצמאי

הייתה קיימת בחלבונים בעלי דומיין בודד והבנתנו כיום כיצד חלבונים מרובי דומיינים נמנעים 

בונים מבנה וביטוי של חל, במסגרת עבודת מחקר זו נשתמש בידע על רצף. מקיפול לקוי היא חלקית

להלן יוצע מנגנון למניעת אגרגציה שלא הוכר . מ לחפש דרכים נוספות שבעזרתן נמנע קיפול לקוי"ע

 .בעבר ומבוסס על אורך החלבון
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י שכפול "חלבונים מרובי דומיינים נוצרים ע .תפקיד הדומיינים כאבני הבניין של חלבונים. 3שרטוט 

קומבינציה של דומיינים . מיוצגים כמלבנים באותו צבע דומיינים השייכים לאותה משפחה. ורקומבינציה

השרטוט לקוח (. supradomain)בסדר מסוים יכולה לשמש לפונקציה מסוימת ולהופיע בחלבונים שונים 

 .(Vogel et al., 2004)י אחרים "מעבודה שנעשתה בעבר ע
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מידע   –מ להעריכו "אורך שרשרת החלבון הוא נתון בסיסי שדורש מידע מינימלי בלבד ע 

אורך החלבון יכול לספק לנו הרבה ידע על , למרות פשטותו. כדוגמת משקלו של החלבון או רצפו

אורך החלבון מספק הערכה בנוגע למהירות בה החלבון מתקפל והערכה בנוגע : ובכלל זה – תכונותיו

הערכה המבוססת על ניתוח נתונים שנעשה על מדידות של ביטוי )לרמות הביטוי היחסי שלו בתא 

מספר עצום של על שימוש בנתון האורך יכול לספק לנו מידע , לכן(. חלבונים רבים והשוואה לאורכם

   .םחלבוני

 

נמצא כי בחלבונים בעלי שני דומיינים קיימת נטייה חזקה , במסגרת עבודת מחקר זו 

הסבר אפשרי (. 4שרטוט )לדומיינים בקצה האמיני להיות קצרים משכניהם בקצה הקרבוקסילי 

כך  , קיימת סלקציה בטבע –לנטייה זו מגיע מהקשר ההופכי בין אורך החלבון לקצב הקיפול שלו 

על מנת לוודא כי נטייה זו . בקצה האמיני יתקפלו מהר יותר משכניהם בקצה הקרבוקסילישדומיינים 

הורחבה  הבדיקה של אורכי , אינה ייחודית לאורגניזמים ספציפיים או למשפחה מסוימת של חלבונים

נטייה זו , אכן .אורגניזמים ומשפחות החלבונים הידועותהדומיינים לאלפי פרוטאומים שלמים של 

ואף התגלה כי היא משמעותית , ברוב הגורף של הפרוטאומים ובכל קבוצות החלבונים שנבדקו נמצאה

 . יותר ביצורים פרוקריוטים מאשר איוקריוטים

הערך המוחלט של סדר "היא מדד המכונה , דרך נוספת להעריך את קצב הקיפול של חלבונים 

חומצות האמינו ברצף המפריד בין אשר הנו  ממוצע מספר (, absolute contact order" )הקשרים

כי מדד , במחקרים שנעשו בעניין זה נמצא. שיירים הנמצאים בקשר פיזיקלי במבנה החלבון המקופל

מניתוח שבוצע במסגרת עבודת מחקר זו בנוגע  .זה נמצא בקשר הופכי לקצב הקיפול של החלבון

יש נטייה לדומיינים בקצה האמיני  נמצא כי  –לחלבונים בעלי שני דומיינים עם מבנה שלישוני פתור 

ממצאים . להיות עם ערך מוחלט של סדר הקשרים נמוך מהדומיינים בקצה הקרבוקסילי הסמוך להם

כך שדומיינים בקצה האמיני יתקפלו , בהנחה שיש סלקציה בטבע, באופן בלתי תלוי, אלה תומכים

סלקציה כה משמעותית יכולה סיבה אפשרית ל. מהר יותר מהדומיינים השכנים בקצה הקרבוקסילי

כפי . תהליך שיכול להביא לאגרגציה –להיות מניעת קיפול לקוי של חלבונים בעלי שני דומיינים 

נוצר לחץ אבולוציוני , על מנת שהתא ימזער ככל הניתן נזקים הנובעים מאגרגציה, שהוזכר לעיל

יותר לאגרגציה מחלבונים עם  שהביא למצב בו לחלבונים עם רמות ביטוי גבוהות תהיה נטייה פחותה

נמצא כי חלבונים , בניתוח רחב היקף שבוצע במסגרת עבודת מחקר זאת, אכן. רמות ביטוי נמוכות

הם עם רמות , בעלי שני דומיינים עם דומיין בקצה האמיני הקצר מהדומיין השכן בקצה הקרבוקסילי

של דומיינים בקצה האמיני להיות לפיה הנטייה , ממצאים אלה תומכים בהשערה. ביטוי יותר גבוהות

נובעת מסלקציה נגד קיפול  –קצרים מהדומיינים בקצה הקרבוקסילי בחלבונים בעלי שני דומיינים 

הממצאים לפיהם נטייה זו חזקה יותר בפרוקריוטים מאשר איוקריוטים יכולים לרמוז על דרך . לקוי

פרונים המקיף שקיים בתא 'ערך הצההתמודדות של התא הפרוקריוטי עם בעיית האגרגציה בהעדר מ

ממצאים אלו מציעים מנגנון שטרם הוכר בעבר למניעת אגרגציה בין דומיינים , לסיכום. האיוקריוטי

 .סמוכים בחלבונים מרובי דומיינים
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הנטייה של חלבונים בעלי שני דומיינים בטבע לדומיין קצר בקצה האמיני לעומת מדגם . 4שרטוט 

מייצג את היחס בין מספר החלבונים בעלי דומיין קצר בקצה האמיני לעומת  הציר האופקי .אקראי

המדגם האקראי נועד לשקף מצב בו לא הייתה . מספר החלבונים בעלי דומיין קצר בקצה הקרבוקסלי

י מדידת היחס כפי שבוצע בקבוצת החלבונים "המדגם יוצר ע. סלקציה על קבוצת החלבונים הנמדדת

פות אקראיות בין הדומיינים בקצה האמיני תוך קיבוע הדומיינים בקצה המקורית אך לאחר החל

מספר החלבונים . מ ליצור את ההיסטוגרמה בשרטוט"פעמים ע 10,000פעולה זו בוצעה  . הקרבוקסילי

 .3000בקבוצה הוא כמעט 

 

ברמת חומצות , שני הנושאים בעבודת מחקר זו מבוססים על ניתוח רצפים של חלבונים

כמבנים שלישוניים , באמצעות שילוב בין הרצף ומקורות מידע אחרים.  הנוקלאוטידים האמינו או

כמויות הרצפים העצומות במספר רב של . ורמות ביטוי של חלבון התגלו מספר תובנות חדשות

וחיבורם בתהליך הניתוח למקורות מידע אחרים שאפשרו לתמוך בהשערות , אורגניזמים מצד אחד

או לביסוסן של הנחות היסוד בעבודה זו שלא היה מתאפשר בדרך של ניסויי הבי, המחקר מצד שני

אין ספק שמרחב האפשרויות בניתוח מידע ביולוגי על בסיס הרצף טומן . מעבדה בטכנולוגיה של ימינו

 .בחובו עוד הרבה אפשרויות שיביאו להבנה יותר טובה של הביולוגיה
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